Proyecciones (Antofagasta) (46 documentos)


21.-
Sum divisor cordial labeling for star and ladder related graphs
Lourdusamy, A1; Patrick, F1
1St. Xavier's College, Department of Mathematics, Tirunelveli, Tamil Nadu. India
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 4 Dic, Pág. 437-455]

   
22.-
Totally magic cordial labeling of m"P"n and m"K"n
Jeyanthi, P1; Angel Benseera, N2; Cahit, Ibrahim3
1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India; 2Sri Meenakshi Government Arts College for Women, Department of Mathematics, Madurai, Tamil Nadu. India; 3European University of Lefke, Department of Computer Science and Engineering, Mersin. Turquía
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 4 Dic, Pág. 371-380]

   
23.-
An alternative proof of a Tauberian theorem for Abel summability method
Canak, Ibrahim1; Totur, Umit2
1Ege University, Department of Mathematics, Izmir. Turquía; 2Adnan Menderes University, Department of Mathematics, Aydin. Turquía
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 3 Sep, Pág. 235-244]

   
24.-
Asymptotic stability in delay nonlinear fractional differential equations
Ardjouni, Abdelouaheb1; Boulares, Hamid2; Djoudi, Ahcene2
1University of Souk Ahras, Faculty of Sciences and Technology, Souk Ahras. Argelia; 2University of Annaba, Faculty of Sciences, Annaba. Argelia
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 3 Sep, Pág. 263-275]

   
25.-
Gliding Hump Properties in Abstract Duality Pairs with Projections
Swartz, Charles1
1New Mexico State University, Mathematics Department, Las Cruces, Nuevo México. Estados Unidos de América
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 3 Sep, Pág. 339-367]

   
26.-
27.-
One modulo three mean labeling of transformed trees
Jeyanthi, P1; Maheswari, A2; Pandiaraj, P2
1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India; 2Kamaraj College of Engineering and Technology, Department of Mathematics, Virudhunagar, Tamil Nadu. India
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 3 Sep, Pág. 277-289]

   
28.-
29.-
Total edge irregularity strength of disjoint union of double wheel graphs
Jeyanthi, P1; Sudha, A2
1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India; 2Wavoo Wajeeha Women's College of Arts & Science, Department of Mathematics, Thoothukudi, Tamil Nadu. India
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 3 Sep, Pág. 251-262]

   
30.-
31.-
Weak forms of continuity and openness
Caldas, Miguel1; Jafari, Saeid2
1Universidade Federal Fluminense, Departamento de Matematica Aplicada, Niteroi, Rio de Janeiro. Brasil; 2College of Vestsjaelland South, Slagelse. Dinamarca
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 3 Sep, Pág. 289-300]

   
32.-
A generalization of Drygas functional equation
Charifi, A1; Almahalebi, M1; Kabbaj, S1
1Universite Ibn Tofail, Faculte des Sciences, Kenitra. Marruecos
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 2 Jun, Pág. 159-176]

   
33.-
Approximate Drygas mappings on a set of measure zero
Almahalebi, Muaadh1
1Universite Ibn Tofail, Faculte des Sciences, Kenitra. Marruecos
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 2 Jun, Pág. 225-233]

   
34.-
   
35.-
   
36.-
37.-
Parametric estimation and the CIR model
Saavedra, Eugenio1
1Universidad de Santiago de Chile, Departamento de Matemática y Ciencia de la Computación, Santiago de Chile. Chile
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 2 Jun, Pág. 197-211]

   
38.-
Vertex equitable labeling of union of cyclic snake related graphs
Jeyanthi, P1; Maheswari, A2; Vijayalakshmi, M3
1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India; 2Kamaraj College of Engineering and Technology, Department of Mathematics, Virudhunagar, Tamil Nadu. India; 3Dr. G.U. Pope College of Engineering, Department of Mathematics, Thoothukudi, Tamil Nadu. India
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 2 Jun, Pág. 177-186]

   
39.-
40.-
Equi independent equitable dominating sets in graphs
Vaidya, S.K1; Kothari, N.J1
1Saurashtra University, Department of Mathematics, Rajkot, Gujarat. India; 2Lukhdhirji Engineering College, Morbi, Gujarat. India
[Proyecciones (Antofagasta), Chile, 2016 Vol. 35 Núm. 1 Mar, Pág. 33-44]