Closed models, strongly connected components and Euler graphs



Título del documento: Closed models, strongly connected components and Euler graphs
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000406097
ISSN: 0716-0917
Autores: 1
Instituciones: 1College Boreal, Toronto, Ontario. Canadá
Año:
Periodo: Jun
Volumen: 35
Número: 2
Paginación: 137-157
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés In this paper, we continue our study of closed models defined in categories of graphs. We construct a closed model defined in the category of directed graphs which characterizes the strongly connected components. This last notion has many applications, and it plays an important role in the web search algorithm of Brin and Page, the foundation of the search engine Google. We also show that for this closed model, Euler graphs are particular examples of cofibrant objects. This enables us to interpret in this setting the classical result of Euler which states that a directed graph is Euleurian if and only if the in degree and the out degree of every of its nodes are equal. We also provide a cohomological proof of this last result
Disciplinas: Matemáticas
Palabras clave: Matemáticas puras,
Algebra homológica,
Teoría de categorías,
Teoría de gráficas,
Digrafos,
Gráficas de Euler
Keyword: Mathematics,
Pure mathematics,
Homological algebra,
Category theory,
Graph theory,
Digraphs,
Euler graphs
Texto completo: Texto completo (Ver PDF)