Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000406124 |
ISSN: | 0716-0917 |
Autores: | Lourdusamy, A1 Patrick, F1 |
Instituciones: | 1St. Xavier's College, Department of Mathematics, Tirunelveli, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Dic |
Volumen: | 35 |
Número: | 4 |
Paginación: | 437-455 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | A sum divisor cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, ··· , |V (G)|} such that an edge uv is assigned the label 1 if 2 divides f(u) + f(v) and 0 otherwise; and the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. A graph with a sum divisor cordial labeling is called a sum divisor cordial graph. In this paper, we prove that D2(K1,n), S 0 (K1,n), D2(Bn,n), DS(Bn,n), S0 (Bn,n), S(Bn,n), < K(1) 1,n∆K(2) 1,n >, S(Ln), Ln ¯ K1, SLn, TLn, TLn ¯ K1 and CHn are sum divisor cordial graphs |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Matemáticas puras, Combinatoria, Teoría de gráficas, Etiquetado |
Keyword: | Mathematics, Applied mathematics, Pure mathematics, Combinatorics, Graph theory, Labelling |
Texto completo: | Texto completo (Ver PDF) |