Thermal properties and degradation kinetics of epoxy-γ -alumina and epoxy-zinc oxide lightweight composites



Título del documento: Thermal properties and degradation kinetics of epoxy-γ -alumina and epoxy-zinc oxide lightweight composites
Revue: Revista mexicana de física
Base de datos: PERIÓDICA
Número de sistema: 000453889
ISSN: 0035-001X
Autores: 1
2
3
3
3
4
Instituciones: 1Centro Nacional de Tecnología Aeronáutica, Colón, Querétaro. México
2El Colegio de Michoacán, La Piedad, Michoacán. México
3Instituto Politécnico Nacional, Ciudad de México. México
4Centro de Ingeniería y Desarrollo Industrial, Querétaro. México
Año:
Periodo: Jul-Ago
Volumen: 66
Número: 4
Paginación: 479-489
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, teórico
Resumen en inglés Lightweight composite materials are the gold standard in aeronautical and aerospace applications due to their strength and low mass. To transport higher payloads and reduce launching costs, nanosatellites, an excellent option for space exploration due to their lightweight structures, are migrating to composite materials. Nanosatellites, also known as CubeSats, must resist high thermal radiation loads while working in orbit. Polymer-based composite materials maintain low mass and the incorporation of reinforcing ceramic fillers contributes to increasing radiation and heat resistance, meeting both requirements. In this work, the effects of γ-alumina (Al2O3) and zinc oxide (ZnO) micro- and nanoparticles on the thermal properties and degradation kinetics of epoxy-based composites were investigated. The effective thermal conductivity improved up to 17.8 % for epoxy/ γ-Al2O3 and 27.4% for epoxy/ZnO. The effective thermal diffusivity values show a monotonic decreasing behavior as a function of the particle concentration for the epoxy/ γ-Al2O3 composites while for the epoxy/ZnO composites, no correlation on the effective thermal diffusivity values with the ZnO-content was observed. Both oxide-based ceramic fillers increase the thermal stability of epoxy up to 250oC; however, γ-Al2O3 decreased the maxima decomposition temperature of the epoxy matrix by 6oC. Zinc oxide did not affect the maxima decomposition temperature but decreased the activation energy of epoxy by 45%. These results provide a feasible manufacturing method for epoxy-based composite materials (i.e., nanosatellites) where efficient heat transfer, heat resistance, and low mass are required
Disciplinas: Física y astronomía
Palabras clave: Física de materia condensada,
Compuestos a base de epoxi,
Rellenos cerámicos de óxido,
Estabilidad térmica,
Conductividad térmica
Keyword: Condensed matter physics,
Epoxy-based composites,
Oxide ceramic fillers,
Thermal stability,
Thermal conductivity
Texte intégral: Texto completo (Ver HTML) Texto completo (Ver PDF)