Revista: | Anales AFA |
Base de datos: | |
Número de sistema: | 000544929 |
ISSN: | 1850-1168 |
Autores: | Jarne, C.1 Alcain, P. N.3 |
Instituciones: | 1Universidad Nacional de Quilmes, Departamento de Ciencia y Tecnología, 2CONICET, 3Universidad Nacional de Buenos Aires, Departamento de Física FCEN, |
Año: | 2019 |
Periodo: | Dic |
Volumen: | 30 |
Número: | 3 |
Paginación: | 68-71 |
País: | Argentina |
Idioma: | Español |
Resumen en inglés | In the fíeld of time series analysis, there is not a unique recipe for studying signal similarities. When having the repetition of a pattern, averaging difíerent signals of the same nature could be complicated. Sometimes averaging is essential in the analysis of the data. Here we propose a method to align and average segments of time series with similar patterns. For this procedure, a simple implementation based on python code is provided. This analysis was inspired by the study of canary sound syllables, but it is possible to apply it in semi-periodic signals of difíerent nature, not necessarily related to sounds. |
Keyword: | Signal Alignment, Time series, Averaging, Python code, Open source I Introduction |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |