Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000406122 |
ISSN: | 0716-0917 |
Autores: | Jeyanthi, P1 Kalaiyarasi, R2 Ramya, D3 Saratha Devi, T4 |
Instituciones: | 1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India 2Dr. Sivanthi Aditanar College of Engineering, Department of Mathematics, Thoothukudi, Tamil Nadu. India 3Government Arts College for Women, Department of Mathematics, Ramanathapuram, Tamil Nadu. India 4G. Venkataswamy Naidu College, Department of Mathematics, Thoothukudi, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Dic |
Volumen: | 35 |
Número: | 4 |
Paginación: | 405-415 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | Let G = (V,E) be a graph with p vertices and q edges. A graph G is said to be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, ..., p+3q−3} satisfying f is 1-1 and the induced map f ∗ : E(G) → {1, 3, 5, ..., 2q−1} defined by f ∗(e) = l|f(u)−f(v)| 2 m is a bijection. A graph that admits skolem odd difference mean labeling is called skolem odd difference mean graph. We call a skolem odd difference mean labeling as skolem even vertex odd difference mean labeling if all vertex labels are even. A graph that admits skolem even vertex odd difference mean labeling is called skolem even vertex odd difference mean graph. In this paper we prove that graphs B(m, n) : Pw, hPmoSni, mPn, mPn ∪ tPs and mK1,n ∪ tK1,s admit skolem odd difference mean labeling. If G(p, q) is a skolem odd differences mean graph then p ≥ q. Also, we prove that wheel, umbrella, Bn and Ln are not skolem odd difference mean graph |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Matemáticas puras, Combinatoria, Teoría de gráficas, Etiquetado |
Keyword: | Mathematics, Applied mathematics, Pure mathematics, Combinatorics, Graph theory, Labelling |
Texto completo: | Texto completo (Ver PDF) |