Some results on skolem odd difference mean labeling



Título del documento: Some results on skolem odd difference mean labeling
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000406122
ISSN: 0716-0917
Autores: 1
2
3
4
Instituciones: 1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India
2Dr. Sivanthi Aditanar College of Engineering, Department of Mathematics, Thoothukudi, Tamil Nadu. India
3Government Arts College for Women, Department of Mathematics, Ramanathapuram, Tamil Nadu. India
4G. Venkataswamy Naidu College, Department of Mathematics, Thoothukudi, Tamil Nadu. India
Año:
Periodo: Dic
Volumen: 35
Número: 4
Paginación: 405-415
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés Let G = (V,E) be a graph with p vertices and q edges. A graph G is said to be skolem odd difference mean if there exists a function f : V (G) → {0, 1, 2, 3, ..., p+3q−3} satisfying f is 1-1 and the induced map f ∗ : E(G) → {1, 3, 5, ..., 2q−1} defined by f ∗(e) = l|f(u)−f(v)| 2 m is a bijection. A graph that admits skolem odd difference mean labeling is called skolem odd difference mean graph. We call a skolem odd difference mean labeling as skolem even vertex odd difference mean labeling if all vertex labels are even. A graph that admits skolem even vertex odd difference mean labeling is called skolem even vertex odd difference mean graph. In this paper we prove that graphs B(m, n) : Pw, hPmoSni, mPn, mPn ∪ tPs and mK1,n ∪ tK1,s admit skolem odd difference mean labeling. If G(p, q) is a skolem odd differences mean graph then p ≥ q. Also, we prove that wheel, umbrella, Bn and Ln are not skolem odd difference mean graph
Disciplinas: Matemáticas
Palabras clave: Matemáticas aplicadas,
Matemáticas puras,
Combinatoria,
Teoría de gráficas,
Etiquetado
Keyword: Mathematics,
Applied mathematics,
Pure mathematics,
Combinatorics,
Graph theory,
Labelling
Texto completo: Texto completo (Ver PDF)