On the classification of hypersurfaces in Euclidean spaces satisfying Lr → Hr+1 = λ → Hr+1



Título del documento: On the classification of hypersurfaces in Euclidean spaces satisfying Lr → Hr+1 = λ → Hr+1
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000405929
ISSN: 0716-0917
Autores: 1
2
Instituciones: 1University of Tabriz, Faculty of Mathematical Sciences, Tabriz. Irán
2University of Maragheh, Faculty of Basic Sciences, Maragheh. Irán
Año:
Periodo: Mar
Volumen: 35
Número: 1
Paginación: 1-10
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés In this paper, we study isometrically immersed hypersurfaces of the Euclidean space En+1 satisfying the condition Lr −→H r+1 = λ −→H r+1 for an integer r ( 0 ≤ r ≤ n − 1), where −→H r+1 is the (r + 1)th mean curvature vector field on the hypersurface, Lr is the linearized operator of the first variation of the (r + 1)th mean curvature of hypersurface arising from its normal variations. Having assumed that on a hypersurface x : Mn → En+1, the vector field −→H r+1 be an eigenvector of the operator Lr with a constant real eigenvalue λ, we show that, Mn has to be an Lr-biharmonic, Lr-1-type, or Lr-null-2- type hypersurface. Furthermore, we study the above condition on a well-known family of hypersurfaces, named the weakly convex hypersurfaces (i.e. on which principal curvatures are nonnegative). We prove that, any weakly convex Euclidean hypersurface satisfying the condition Lr −→H r+1 = λ −→H r+1 for an integer r ( 0 ≤ r ≤ n − 1), has constant mean curvature of order (r + 1). As an interesting result, we have that, the Lr-biharmonicity condition on the weakly convex Euclidean hypersurfaces implies the r-minimality
Disciplinas: Matemáticas
Palabras clave: Matemáticas puras,
Geometría diferencial,
Hipersuperficies,
Subvariedades,
Inmersiones,
Espacios euclideanos
Keyword: Mathematics,
Pure mathematics,
Differential geometry,
Hypersurfaces,
Submanifolds,
Immersions,
Euclidean spaces
Texto completo: Texto completo (Ver PDF)