EMiner: A Tool for Selecting Classification Algorithms and Optimal Parameters



Título del documento: EMiner: A Tool for Selecting Classification Algorithms and Optimal Parameters
Revista: Polibits
Base de datos: PERIÓDICA
Número de sistema: 000402968
ISSN: 1870-9044
Autores: 1
1
1
1
1
Instituciones: 1Universidade Federal do Maranhao, Sao Luis, Maranhao. Brasil
Año:
Periodo: Jul-Dic
Número: 52
Paginación: 17-24
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés In this paper, Genetic Algorithm (GA) is used to search for combinations of learning algorithms and associated parameters with maximum accuracy. An important feature of the approach is that the GA initial population is formed by using parameter values gathered from ExpDB (a public database of data mining experiments). The proposed approach was implemented in a tool called EMiner, built on top of a grid based software infrastructure for developing collaborative applications in medicine and healthcare domains (ECADeG project). Experiments on 16 datasets from the UCI repository were performed. The results obtained have shown that the strategy of combining the data from ExpDB via GA is effective in finding classification models with good accuracy
Disciplinas: Ciencias de la computación,
Medicina
Palabras clave: Inteligencia artificial,
Diagnóstico,
Algoritmos genéticos,
Minería de datos
Keyword: Computer science,
Medicine,
Artificial intelligence,
Diagnosis,
Genetic algorithms,
Data mining
Texto completo: Texto completo (Ver PDF)