A Hybrid Approach for Event Extraction



Título del documento: A Hybrid Approach for Event Extraction
Revista: Polibits
Base de datos: PERIÓDICA
Número de sistema: 000373722
ISSN: 1870-9044
Autores: 1
1
1
Instituciones: 1Jadavpur University, Computer Science and Engineering Department, Calcuta, Bengala Occidental. India
Año:
Periodo: Jul-Dic
Número: 46
Paginación: 55-59
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental, aplicado
Resumen en inglés Event extraction is a popular and interesting research field in the area of Natural Language Processing (NLP). In this paper, we propose a hybrid approach for event extraction within the TimeML framework. Initially, we develop a machine learning based system based on Conditional Random Field (CRF). But most of the deverbal event nouns are not correctly identified by this machine learning approach. From this observation, we came up with a hybrid approach where we introduce several strategies in conjunction with machine learning. These strategies are based on semantic role–labeling, WordNet and handcrafted rules. Evaluation results on the TempEval–2010 datasets yield the precision, recall and F–measure values of approximately 93.00%, 96.00% and 94.47%, respectively. This is approximately 12% higher F–measure in comparison with the best performing system of SemEval–2010
Disciplinas: Ciencias de la computación
Palabras clave: Procesamiento de datos,
Procesamiento de lenguaje natural,
Eventos,
Campo aleatorio condicional
Keyword: Computer science,
Data processing,
Natural language processing,
Events,
Conditional random field
Texto completo: Texto completo (Ver HTML)