Revista: | Latin-American Journal of Computing (LAJC) |
Base de datos: | |
Número de sistema: | 000565069 |
ISSN: | 1390-9134 |
Autores: | Flores, Miguel1 Saltos, Guido2 Castillo Páez, Sergio3 |
Instituciones: | 1Escuela Politécnica Nacional, Departamento de Matemáticas, Quito, Pichincha. Ecuador 2Universidad de las Américas, Quito, Pichincha. Ecuador 3Universidad de las Fuerzas Armadas, Sangolquí, Pichincha. Ecuador |
Año: | 2016 |
Volumen: | 3 |
Número: | 2 |
Paginación: | 8-8 |
País: | Ecuador |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | This work aims to classify the DNA sequences of healthy and malignant cancer respectively. For this, supervised and unsupervised classification methods from a functional context are used; i.e. each strand of DNA is an observation. The observations are discretized, for that reason different ways to represent these observations with functions are evaluated. In addition, an exploratory study is done: estimating the mean and variance of each functional type of cancer. For the unsupervised classification method, hierarchical clustering with different measures of functional distance is used. On the other hand, for the supervised classification method, a functional generalized linear model is used. For this model the first and second derivatives are used which are included as discriminating variables. It has been verified that one of the advantages of working in the functional context is to obtain a model to correctly classify cancers by 100%. For the implementation of the methods it has been used the fda.usc R package that includes all the techniques of functional data analysis used in this work. In addition, some that have been developed in recent decades. For more details of these techniques can be consulted Ramsay, J. O. and Silverman (2005) and Ferraty et al. (2006). |
Disciplinas: | Ciencias de la computación, Ciencias de la computación |
Palabras clave: | Inteligencia artificial, Procesamiento de datos |
Keyword: | Artificial intelligence, Data processing |
Texto completo: | Texto completo (Ver PDF) |