Small sample properties of bayesian estimators of labor income processes



Título del documento: Small sample properties of bayesian estimators of labor income processes
Revista: Journal of applied economics
Base de datos: CLASE
Número de sistema: 000430345
ISSN: 1667-6726
Autores: 1
2
Instituciones: 1Federal Reserve System, Washington, Distrito de Columbia. Estados Unidos de América
2Stanford University, Graduate School of Business, Stanford, California. Estados Unidos de América
Año:
Periodo: May
Volumen: 18
Número: 1
Paginación: 121-148
País: Argentina
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Aplicado
Resumen en inglés There exists an extensive literature estimating idiosyncratic labor income processes. While a wide variety of models are estimated, GMM estimators are almost always used. We examine the validity of using likelihood based estimation in this context by comparing the small sample properties of a Bayesian estimator to those of GMM. Our baseline studies estimators of a commonly used simple earnings process. We extend our analysis to more complex environments, allowing for real world phenomena such as time varying and heterogeneous parameters, missing data, unbalanced panels, and non-normal errors. The Bayesian estimators are demonstrated to have favorable bias and efficiency properties
Disciplinas: Economía
Palabras clave: Econometría,
Economía del trabajo,
Ingreso,
Modelos econométricos,
Estimación bayesiana,
Estimadores
Texto completo: Texto completo (Ver PDF)