Revista: | Ingeniería (Bogotá) |
Base de datos: | |
Número de sistema: | 000538199 |
ISSN: | 0121-750X |
Autores: | Rosso Mateus, Andrés E.1 Montilla Montilla, Yeimy. M.1 Garzón Martínez, Sonia C.2 |
Instituciones: | 1Universidad Nacional de Colombia, Colombia 2Universidad Distrital Francisco José de Caldas, Bogotá. Colombia |
Año: | 2022 |
Periodo: | Sep-Dic |
Volumen: | 27 |
Número: | 3 |
País: | Colombia |
Idioma: | Español |
Resumen en español | Contexto: La política pública de Catastro Multipropósito necesita consolidar información inmobiliaria de diferentes fuentes para su análisis, tales como ofertas, transacciones y costos de construcción, entre otros. Las páginas web inmobiliarias forman parte de estas fuentes de información, aunque no han sido incluidas en el análisis comercial. Considerando lo anterior, es necesario revisar una metodología que permita acceder de forma óptima a estas plataformas web y facilite el análisis de las variables que allí se proveen, que son determinantes para el valor comercial de un inmueble. Se realiza un caso de estudio en tres ciudades colombianas: Fusagasugá, Manizales y Villavicencio. Método: El método se desarrolla en dos etapas (i) web scraping. que permite obtener los enlaces de la información de páginas web inmobiliarias y descargar sus datos, y (ii) el análisis de datos inmobiliarios mediante el desarrollo de un flujo de trabajo que inicia con la exploración y la limpieza de los datos, continúa con el pre-modelado y finaliza con el modelado de las variables de interés en la determinación del valor de los bienes inmuebles usando técnicas de machine learning. Resultados: A partir de la aplicación de técnicas de machine learning, fue posible automatizar la recolección, la limpieza, el almacenamiento y el análisis de datos inmobiliarios provenientes de plataformas web, así como delinear dos modelos (Ridge Regression y Random Forest) que, de acuerdo, con su error porcentual medio absoluto (0,34 y 0,35 respectivamente), permiten predecir el valor comercial de un inmueble considerando variables explicativas internas y externas. Conclusiones: Obtener y analizar los datos inmobiliarios de fuentes alternativas como las plataformas web a través de desarrollos tecnológicos contribuye significativamente a atender la alta demanda de información del catastro del país. No obstante, es necesario ampliar el suministro de esta información a los ámbitos rurales, que cuentan con menos acceso y disponibilidad de la misma. |
Resumen en inglés | Context: The Multipurpose Cadastre public policy needs to consolidate real estate information from different sources for analysis, such as offers, transactions, and construction costs, among others. Real estate websites are part of these sources of information, although they have not yet been included in commercial analysis. In light of the above, it is necessary to review a methodology that allows optimal access to these web platforms and facilitates the analysis of the variables provided therein, which are crucial to a property’s commercial value. A study case was carried out in three Colombian cities: Fusagasugá, Manizales, and Villavicencio. Method: The method is implemented in two stages: (i) web scraping, which allows obtaining the information links from real estate web pages and downloading their data, and (ii) analyzing real estate data by developing a workflow that starts with data exploration and cleaning, continues with pre-modeling, and ends by modeling the crucial variables in the determination of real estate value using machine learning techniques. Results: By applying machine learning techniques, it was possible to automate the collection, cleaning, storage, and analysis of real estate data from web platforms, as well as to outline two models (Ridge Regression and Random Forest), which, according to their mean absolute percentage error (0,34 and 0,35, respectively), allow predicting the commercial value of a property while considering internal and external explanatory variables. Conclusions: Obtaining and analyzing real estate data from alternative sources such as web platforms through machine learning techniques contributes significantly to addressing the high information de-mand of the country’s cadastre. However, it is necessary to expand the supply of this information to rural areas, which have less access and availability to it. |
Palabras clave: | Catastro Multipropósito, Dinámica inmobiliaria, Mercado inmobiliario, Valor comercial, Web scraping. |
Keyword: | Multipurpose Cadastre, Real estate dynamics, Real Estate Market, Commercial Value, Web scraping. |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |