Air Quality Measurement Using an IoT Network: a Case Study



Título del documento: Air Quality Measurement Using an IoT Network: a Case Study
Revista: Ingeniería (Bogotá)
Base de datos:
Número de sistema: 000538167
ISSN: 0121-750X
Autores: 1
1
2
Instituciones: 1Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Bogotá. Colombia
2Universidad Distrital Francisco José de Caldas, Bogotá, Bogotá. Colombia
Año:
Periodo: Sep-Dic
Volumen: 26
Número: 3
Paginación: 401-418
País: Colombia
Idioma: Inglés
Resumen en español Contexto: La evaluación de la calidad del aire en Colombia es localizada; no va más allá de determinar si el nivel del gas contaminante en un punto específico de la red de monitoreo ha excedido un umbral, de acuerdo con una norma o estándar, con el fin de generar una alarma. No se compromete con objetivos tan importantes como identificar en tiempo real la dinámica de dispersión de los gases contaminantes en una zona, ni la predicción de la nueva población afectada. Desde esta perspectiva, se evaluó la presencia de los gases contaminantes en el campus universitario de la Escuela Colombiana de Ingeniería Julio Garavito, ubicada al norte de la ciudad de Bogotá, y se estimó la población afectada para el mes de octubre de 2019 utilizando la técnica geoestadística de Kriging. Método: Este estudio forma parte del diseño y construcción de una estación móvil auxiliar que monitorea y reporta información complementaria (gases CO y SO2) a la que brinda la estación meteorológica de Guaymaral, ubicada en el norte de Bogotá. Esta información es transmitida a través de una red IoT hacia un servidor, donde se crea una base de datos que almacena la información de los gases contaminantes reportada por las 14 estaciones de la red de monitoreo de calidad del aire de Bogotá, la información enviada por la estación auxiliar y la información estadística de la población presente en el campus universitario. Los datos de los gases contaminantes y la información de la población registrada desde el 1 al 31 de octubre de 2019 son el insumo para el análisis de datos mediante el método de interpolación de Kriging y la predicción de la población afectada en dicho campus. Resultados: Se encuentra una concentración de material particulado de 29 µg/m3 de PM10 en el coliseo y 12,6 µg/m3 de PM2,5 en el edificio G. Además de 9,8 ppb de O3 en el edificio I, 14,9 ppb de NO2 en ese mismo edificio, 0,79 ppb de CO en el edificio C y 0,65 ppb de SO2 también en el edificio C, permitiendo inferir, según el índice de calidad del aire de Bogotá, una calidad del aire favorable para una población de 2.131 personas que visitaron el campus universitario durante el período mencionado. Conclusiones: La correcta integración de los datos en el servidor web y el análisis de estos, realizado en lenguaje R, permitieron determinar los indicadores aproximados de los factores contaminantes en el área de la Escuela Colombiana de Ingeniería Julio Garavito. Adicionalmente, para determinar la población afectada, estos indicadores se correlacionaron con la información de la población registrada que ingresó al campus durante el periodo de estudio. Con base en los resultados obtenidos, se pudo concluir que la calidad del aire en el campus universitario de la Escuela Colombiana de Ingeniería Julio Garavito es favorable y 2.131 personas se beneficiaron diariamente de estas condiciones.
Resumen en inglés Context: The evaluation of air quality in Colombia is localized; it does not go beyond determining whether the level of the polluting gas at a specific point of the monitoring network has exceeded a threshold, according to a norm or standard, in order to trigger an alarm. It is not committed to objectives as important as the real-time identification of the dispersion dynamics of polluting gases in an area, or the prediction of the newly affected population. From this perspective, the presence of polluting gases was evaluated on the university campus of Escuela Colombiana de Ingeniería Julio Garavito, located north of the city of Bogotá, and the affected population was estimated for the month of October, 2019, using the Kriging geostatistical technique. Method: This study is part of the design and construction of an auxiliary mobile station that monitors and reports complementary information (CO and SO2 gases) to that provided by the Guaymaral meteorological station, located in the north of Bogotá. This information is transmitted through an IoT network to a server, where a database is created which stores the information on polluting gases reported by the 14 stations of the Bogotá air quality monitoring network, the information sent by the auxiliary station, and the statistical information of the population present on the university campus. Pollutant gas data and population information recorded from October 1st to 31st, 2019, are the input for data analysis using the Kriging interpolation method and predicting the affected population on said campus. Results: There is a particulate matter concentration of 29 µg/m3 of PM10 in the coliseum and 12,6 µg/m3 of PM2,5 in building G, in addition to 9,8 ppb of O3 in building I, 14,9 ppb of NO2 in that same building, 0,79 ppb of CO in building C, and 0,65 ppb of SO2 also in building C, thus allowing to infer, according to the Bogotá air quality index, a favorable air quality for a population of 2.131 people who visited the campus university during the aforementioned period. Conclusions: The correct integration of the data in the web server and their analysis, carried out in the R language, allowed determining the approximate indicators of the polluting factors around Escuela Colombiana de Ingeniería Julio Garavito. Additionally, to determine the affected population, these indicators were correlated with the information on the registered population that entered the campus during the period under study. Based on the results obtained, it was concluded that the air quality on the campus of Escuela Colombiana de Ingeniería Julio Garavito is favorable, and that 2.131 people benefited daily from these conditions.
Palabras clave: Factores contaminantes,
Modelación,
Método de Kriging,
Calidad del aire,
Área,
Población.
Keyword: Polluting factors,
Modeling,
Kriging method,
Air quality,
Area,
Population.
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)