Revista: | Gerencia tecnológica informática |
Base de datos: | PERIÓDICA |
Número de sistema: | 000415077 |
ISSN: | 1657-8236 |
Autores: | Castro Caicedo, Fausto Miguel Jojoa Gómez, Pablo Emilio1 |
Instituciones: | 1Universidad del Cauca, Facultad de Ingeniería Electrónica y Telecomunicaciones, Cali, Valle del Cauca. Colombia |
Año: | 2015 |
Periodo: | May-Ago |
Volumen: | 14 |
Número: | 39 |
Paginación: | 65-74 |
País: | Colombia |
Idioma: | Español |
Tipo de documento: | Artículo |
Enfoque: | Aplicado, descriptivo |
Resumen en español | Se presenta un nuevo algoritmo para el entrenamiento de redes neuronales perceptrón multicapa llamado Acelerador Regresivo versión Gamma con Gradiente Local de Error. Este algoritmo se basa en los mismos principios que rigen la actualización de parámetros en el algoritmo Acelerador Regresivo versión Gamma. El algoritmo Acelerador Regresivo versión Gamma con Gradiente Local de Error se valida mediante diferentes problemas relacionados con aproximación de funciones y reconocimiento de patrones. Los resultados muestran buen comportamiento en cuanto a convergencia y generalización, mejorando la tasa de aprendizaje del algoritmo “backpropagation” |
Resumen en inglés | A new algorithm is presented for Multi-Layer Perceptron Neural Networks training, which is called Gamma version regressive accelerator algorithm with local error gradient. This algorithm is based on the same principles as parameter actualization in Gamma version regressive accelerator algorithm. Gamma version regressive accelerator algorithm with local error gradient is validated through different problems related to pattern recognition and fitting function. Results show good convergence and generalization, and improving the learning rate of back propagation algorithm |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Redes, Redes neuronales artificiales, Perceptrón multicapa, Algoritmos, Reconocimiento de patrones, Aproximación de funciones |
Keyword: | Computer science, Networks, Artificial neural networks, Multilayer perceptron, Algorithms, Pattern recognition, Functions fitting |
Texto completo: | Texto completo (Ver PDF) |