Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation



Título del documento: Matrix polynomials with partially prescribed eigenstructure: eigenvalue sensitivity and condition estimation
Revista: Computational & applied mathematics
Base de datos: PERIÓDICA
Número de sistema: 000269390
ISSN: 1807-0302
Autores: 1
Instituciones: 1Universidade Federal de Santa Catarina, Departamento de Matematica, Florianopolis, Santa Catarina. Brasil
Año:
Periodo: Sep-Dic
Volumen: 24
Número: 3
Paginación: 365-392
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, descriptivo
Resumen en inglés Let Pm(z) be a matrix polynomial of degree m whose coefficients At Î Cq×q satisfy a recurrence relation of the form: hkA0+ hk+1A1+...+ hk+m-1Am-1 = hk+m, k > 0, where hk = RZkL Î Cp×q, R Î Cp×n, Z = diag (z1,...,zn) with zi ¹ zj for i ¹ j, 0 < |zj| < 1, and L Î Cn×q. The coefficients are not uniquely determined from the recurrence relation but the polynomials are always guaranteed to have n fixed eigenpairs, {zj,lj}, where lj is the jth column of L*. In this paper, we show that the zj's are also the n eigenvalues of an n×n matrix CA; based on this result the sensitivity of the zj's is investigated and bounds for their condition numbers are provided. The main result is that the zj's become relatively insensitive to perturbations in CA provided that the polynomial degree is large enough, the number n is small, and the eigenvalues are close to the unit circle but not extremely close to each other. Numerical results corresponding to a matrix polynomial arising from an application in system theory show that low sensitivity is possible even if the spectrum presents clustered eigenvalues
Disciplinas: Matemáticas
Palabras clave: Matemáticas aplicadas,
Matrices polinominales,
Eigenvalores
Keyword: Mathematics,
Applied mathematics,
Matrix polynomials,
Eigenvalues
Texto completo: Texto completo (Ver HTML)