Discrete approximations for strict convex continuous time problems and duality



Título del documento: Discrete approximations for strict convex continuous time problems and duality
Revista: Computational & applied mathematics
Base de datos: PERIÓDICA
Número de sistema: 000272478
ISSN: 1807-0302
Autores: 1
2
Instituciones: 1Universidade Estadual de Campinas, Departamento de Matematica Aplicada, Campinas, Sao Paulo. Brasil
2Universidade Estadual Paulista "Julio de Mesquita Filho", Sao Jose do Rio Preto, Sao Paulo. Brasil
Año:
Volumen: 23
Número: 1
Paginación: 81-105
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Aplicado, descriptivo
Resumen en inglés We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory
Disciplinas: Matemáticas
Palabras clave: Matemáticas aplicadas,
Problemas cuadráticos,
Tiempo continuo,
Aproximación discreta
Keyword: Mathematics,
Applied mathematics,
Quadratic problems,
Continuous time,
Discrete approximation
Texto completo: Texto completo (Ver HTML)