Revista: | Computational & applied mathematics |
Base de datos: | PERIÓDICA |
Número de sistema: | 000272478 |
ISSN: | 1807-0302 |
Autores: | Andreani, R1 Goncalves, P.S2 Silva, G.N |
Instituciones: | 1Universidade Estadual de Campinas, Departamento de Matematica Aplicada, Campinas, Sao Paulo. Brasil 2Universidade Estadual Paulista "Julio de Mesquita Filho", Sao Jose do Rio Preto, Sao Paulo. Brasil |
Año: | 2004 |
Volumen: | 23 |
Número: | 1 |
Paginación: | 81-105 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Aplicado, descriptivo |
Resumen en inglés | We propose a discrete approximation scheme to a class of Linear Quadratic Continuous Time Problems. It is shown, under positiveness of the matrix in the integral cost, that optimal solutions of the discrete problems provide a sequence of bounded variation functions which converges almost everywhere to the unique optimal solution. Furthermore, the method of discretization allows us to derive a number of interesting results based on finite dimensional optimization theory, namely, Karush-Kuhn-Tucker conditions of optimality and weak and strong duality. A number of examples are provided to illustrate the theory |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Problemas cuadráticos, Tiempo continuo, Aproximación discreta |
Keyword: | Mathematics, Applied mathematics, Quadratic problems, Continuous time, Discrete approximation |
Texto completo: | Texto completo (Ver HTML) |