Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560784 |
ISSN: | 1405-5546 |
Autores: | Escalante Hernández, Alejandro1 Joaquín Arellano, Luis2 Lavalle Martínez, José de Jesús1 Villaseñor Pineda, Luis2 Escalante, Hugo Jair2 |
Instituciones: | 1Benemérita Universidad Autónoma de Puebla, Puebla. México 2Instituto Nacional de Astrofísica, Optica y Electrónica, Tonantzintla, Puebla. México |
Año: | 2023 |
Periodo: | Ene-Mar |
Volumen: | 27 |
Número: | 1 |
Paginación: | 153-162 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | Violence is a latent threat for individuals, this is an even more concerning issue in Latin American cities. The detection and monitoring of events reported in social media could help to build maps of zones with incident of violent events. This could eventually lead to the automatic generation of risk maps which could be of great help to users and even authorities. This paper aims to detect violent incidents reported in social media using visual information only. While most of the related work focuses on the text modality, the goal of this paper is to assess the feasibility of detection when only visual information is available. CNN based feature extraction and standard classification models are implemented and evaluated in a recently released corpus. Experimental results show that distinguishing images depicting violent events is feasible, but the fine grain recognition of categories is still an open problem. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Procesamiento de datos |
Keyword: | Data processing |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |