Subjectivity Detection in Nuclear Energy Tweets



Título del documento: Subjectivity Detection in Nuclear Energy Tweets
Revista: Computación y sistemas
Base de datos: PERIÓDICA
Número de sistema: 000423316
ISSN: 1405-5546
Autores: 1
1
1
2
2
Instituciones: 1Nanyang Technological University, School of Computer Science and Engineering, Nanyang. Singapur
2Nanyang Technological University, Wee Kim Wee School of Communication and Information, Nanyang. Singapur
Año:
Periodo: Oct-Dic
Volumen: 21
Número: 4
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, descriptivo
Resumen en inglés The subjectivity detection is an important binary classification task that aims at distinguishing natural language texts as opinionated (positive or negative) and non-opinionated (neutral). In this paper, we develop and apply recent subjectivity detection techniques to determine subjective and objective tweets towards the hot topic of nuclear energy. This will further help us to detect the presence or absence of social media bias towards Nuclear Energy. In particular, significant network motifs of words and concepts were learned in dynamic Gaussian Bayesian networks, while using Twitter as a source of information. We use reinforcement learning to update each weight based on a probabilistic reward function over all the weights and, hence, to regularize the sentence model. The proposed framework opens new avenues in helping government agencies manage online public opinion to decide and act according to the need of the hour
Disciplinas: Ciencias de la computación,
Literatura y lingüística
Palabras clave: Lingüística aplicada,
Mensajes de texto,
Detección de subjetividad,
Procesamiento de lenguaje natural
Keyword: Applied linguistics,
Text messages,
Natural language processing,
Subjectivity detection
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)