Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560676 |
ISSN: | 1405-5546 |
Autores: | Sharma, Bharti1 Hashmi, Adeel2 Gupta, Charu3 Jain, Amita4 |
Instituciones: | 1Maharaja Surajmal Institute of Technology, Department of Information Technology, Delhi. India 2Maharaja Surajmal Institute of Technology, Department of Computer Science and Engineering, Delhi. India 3Bhagwan Parshuram Institute of Technology, Department of Computer Science and Engineering, Delhi. India 4Netaji Subhas University of Technology, Department of Computer Science and Engineering, Delhi. India |
Año: | 2022 |
Periodo: | Abr-Jun |
Volumen: | 26 |
Número: | 2 |
Paginación: | 537-549 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | A recommendation system aims to capture the taste of the customer and predict relevant items which he/she may be interested in buying. There are many algorithms for generating recommendations in literature, however, most of them are non-optimal and do not have the capability to handle big data. In this paper, a collaborative recommendation system is proposed based on improved firefly algorithm. The firefly algorithm is used to generate optimal clusters which provide effective recommendations. The proposed algorithm works in two phases: Phase I which generates the clusters with firefly algorithm and Phase II gives real time recommendations. The firefly algorithm has been implemented in Apache Spark to give it the capability of handling big data. The combination of improved firefly-based clustering and Apache Spark makes it much faster and optimal than the state-of-the-art recommendation models. For experiments, movie-lens dataset has been utilized and different evaluation metrics have been used for performance analysis. The results show that the proposed method gives better results compared to existing methods. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Inteligencia artificial |
Keyword: | Artificial intelligence |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |