Automatic Hate Speech Detection Using Deep Neural Networks and Word Embedding



Título del documento: Automatic Hate Speech Detection Using Deep Neural Networks and Word Embedding
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560695
ISSN: 1405-5546
Autores: 1
2
1
1
1
1
Instituciones: 1Instituto Politécnico Nacional, Centro de Investigación en Computación, Ciudad de México. México
2Dalat University, Lam Dong. Vietnam
Año:
Periodo: Abr-Jun
Volumen: 26
Número: 2
Paginación: 1007-1013
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés Hatred spreading through the use of language on social media platforms and in online groups is becoming a well-known phenomenon. By comparing two text representations: bag of words (BoW) and pre-trained word embedding using GloVe, we used a binary classification approach to automatically process user contents to detect hate speech. The Naive Bayes Algorithm (NBA), Logistic Regression Model (LRM), Support Vector Machines (SVM), Random Forest Classifier (RFC) and the one-dimensional Convolutional Neural Networks (1D-CNN) are the models proposed. With a weighted macro-F1 score of 0.66 and a 0.90 accuracy, the performance of the 1D-CNN and GloVe embeddings was best among all the models.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)