Industrial crystallization and precipitation from solutions: state of the technique



Document title: Industrial crystallization and precipitation from solutions: state of the technique
Journal: Brazilian journal of chemical engineering
Database: PERIÓDICA
System number: 000308800
ISSN: 0104-6632
Authors: 1



Institutions: 1Instituto de Pesquisas Tecnologicas do Estado de Sao Paulo, Divisao de Quimica, Sao Paulo. Brasil
Year:
Season: Dic
Volumen: 18
Number: 4
Pages: 423-440
Country: Brasil
Language: Inglés
Document type: Artículo
Approach: Aplicado, descriptivo
English abstract Crystallization and precipitation from solutions are responsible for 70% of all solid materials produced by the chemical industry. Competing with distillation as a separation and purification technique, their use is widespread. They operate at low temperatures with low energy consumption and yield with high purifications in one single step. Operational conditions largely determine product quality in terms of purity, filterability, flowability and reactivity. Producing a material with the desired quality often requires a sound knowledge of the elementary steps involved in the process: creation of supersaturation, nucleation, crystal growth, aggregation and other secondary processes. Mathematical models coupling these elementary processes to all particles in a crystallizer have been developed to design and optimize crystallizer operation. For precipitation, the spatial distribution of reactants and particles in the reactor is important; thus the tools of computational fluid dynamics are becoming increasingly important. For crystallization of organic chemicals, where incorporation of impurities and crystal shape are critical, molecular modeling has recently appeared as a useful tool. These theoretical developments must be coupled to experimental data specific to each material. Theories and experimental techniques of industrial crystallization and precipitation from solutions are reviewed, and recent developments are highlighted
Disciplines: Química
Keyword: Química industrial,
Ingeniería química,
Cristalización,
Precipitación,
Dinámica de fluidos computacional (CFD)
Keyword: Chemistry,
Industrial chemistry,
Chemical engineering,
Crystallization,
Precipitation,
Computational fluid dynamics (CFD)
Full text: Texto completo (Ver HTML)