Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor



Document title: Engineering drought and salt tolerance in plants using SodERF3, a novel sugarcane ethylene responsive factor
Journal: Biotecnología aplicada
Database: PERIÓDICA
System number: 000349300
ISSN: 0864-4551
Authors: 1
1
1
2
2
2
2
1
1
1
1
Institutions: 1Centro de Ingeniería Genética y Biotecnología, Laboratorio de Interacción Planta-Microorganismo, La Habana. Cuba
2Centro de Ingeniería Genética y Biotecnología, Laboratorio de Genómica Funcional de Plantas, La Habana. Cuba
Year:
Volumen: 26
Number: 2
Pages: 168-171
Country: Cuba
Language: Inglés
Document type: Reporte técnico
Approach: Experimental
English abstract The ability of plants to tolerate salt and drought conditions is crucial for agricultural production worldwide. The increased understanding of the regulatory networks controlling drought stress response has led to practical approaches for engineering salt and drought tolerance in plants. By a single-pass sequencing of randomly selected clones from a ë ZAP-cDNA library generated from ethephon-treated young sugarcane leaves, we identified an expressed sequence tag encoding a putative protein with a DNA-binding domain that is typically found in EREBP/ AP2-type transcription factors. The full-length cDNA clone, named SodERF3 (EMBL accession number AM493723) was further isolated from the excised library. SodERF3 encodes a 240 amino acid DNA-binding protein that acts as a transcriptional regulator of the Ethylene Responsive Factor (ERF) superfamily, but also contains a C-terminal short hydrophobic region resembling an ERF-associated amphiphilic repression-like motif, typical for class II ERFs. This protein binds to the GGC box, and its deduced amino acid sequence contains an N-terminal putative nuclear localization signal. SodERF3 is induced in sugar cane leaves by ethylene, abscisic acid, salt stress and wounding as judged by Northern and Western blots assays. Greenhouse grown transgenic tobacco plants (Nicotiana tabacum L. cv. SR1) expressing SodERF3 were found to display increased tolerance to drought and osmotic stress without any visible phenotypic change in growth and development. According to our results SodERF3 will be a valuable tool to assist the manipulation of plants to improve their stress tolerance
Disciplines: Agrociencias,
Química
Keyword: Bioquímica,
Genética,
Fisiología vegetal,
Gen SodERF3,
Caña de azúcar,
Ethephon,
Estrés biótico,
Estrés abiótico,
Tolerancia a la sequía,
Tolerancia a la salinidad,
Plantas transgénicas,
Nicotiana tabacum
Keyword: Agricultural sciences,
Chemistry,
Biochemistry,
Genetics,
Plant physiology,
SodERF3 gene,
Ethephon,
Sugar cane,
Biotic stress,
Abiotic stress,
Drought tolerance,
Salinity tolerance,
Transgenic plants,
Nicotiana tabacum
Full text: Texto completo (Ver PDF)