Revista: | Atmósfera |
Base de datos: | PERIÓDICA |
Número de sistema: | 000456594 |
ISSN: | 0187-6236 |
Autores: | Comert, Mehmet Murat1 Adem, Kemal2 Erdogan, Muberra1 |
Instituciones: | 1Gaziosmanpasa University, Faculty of Agriculture, Tokat. Turquía 2Sivas University of Science and Technology, Faculty of Engineering and Natural Sciences, Sivas. Turquía |
Año: | 2023 |
Volumen: | 37 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, descriptivo |
Resumen en español | La radiación solar, que se utiliza en la modelación hidrológica y agrícola, sistemas de energía solar y en estudios climatológicos, es el elemento más importante de la energía que llega a la tierra. El presente estudio comparó el desempeño de dos ecuaciones empíricas -las ecuaciones de Angstrom y Hargreaves-Samani- y tres modelos de aprendizaje automático -Redes Neuronales Artificiales (ANN), Máquina de Vectores de Soporte (SVM) y Memoria a Largo Corto Plazo (LSTM)-. Se desarrollaron varios modelos de aprendizaje para las variables utilizadas en cada ecuación empírica. En el presente estudio, se utilizaron datos mensuales de seis estaciones en Turquía, tres estaciones que reciben la mayor radiación solar y tres estaciones que reciben la menor radiación solar. En términos de los valores del error cuadrático (MSE), el error cuadrático medio (RMSE), el error absoluto medio (MAE) y el coeficiente de determinación (R2) de cada modelo; el LSTM fue el modelo de aprendizaje más exitoso, seguido de los modelos de aprendizaje automático ANN y SVM, respectivamente. El valor de MAE fue de 2,65 con la ecuación de Hargreaves-Samani y disminuyó a 0,987 con el modelo LSTM mientras que MAE fue de 1,24 en la ecuación de Angstrom y disminuyó a 0,747 con el modelo LSTM. El estudio reveló que el modelo de aprendizaje profundo es más apropiado para usar en comparación con las ecuaciones empíricas, incluso en los casos en que hay datos limitados |
Resumen en inglés | Solar radiation, which is used in hydrological and agricultural modeling, agricultural, solar energy systems, and climatological studies, is the most important element of the energy reaching the earth. The present study compared the performance of two empirical equations -Angstrom and Hargreaves-Samani equations- and three machine learning models -Artificial Neural Networks (ANN), Support Vector Machine (SVM), and Long Short-Term Memory (LSTM)-. Various learning models were developed for the variables used in each empirical equation. In the present study, monthly data of six stations in Turkey, three stations receiving the most solar radiation and three stations receiving the lowest solar radiation, were used. In terms of the mean squared error (MSE), root mean squared error (RMSE), mean absolute error (MAE), and determination coefficient (R2) values of each model, the LSTM was the most successful model, followed by ANN and SVM. The MAE value was 2.65 with the Hargreaves-Samani equation and decreased to 0.987 with the LSTM model, while MAE was 1.24 in the Angstrom equation and decreased to 0.747 with the LSTM model. The study revealed that the deep learning model is more appropriate to use than the empirical equations, even in cases with limited data |
Disciplinas: | Geociencias |
Palabras clave: | Ciencias de la atmósfera, Radiación solar, Ecuaciones empiricas, Aprendizaje automático, Aprendizaje profundo, Modelo LSTM |
Keyword: | Atmospheric sciences, Solar radiation, Empirical equations, Machine learning, Deep learning, LSTM model |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |