Revista: | Acta scientiarum. Agronomy |
Base de datos: | PERIÓDICA |
Número de sistema: | 000459935 |
ISSN: | 1679-9275 |
Autores: | Cardoso, Daniel Bonifácio Oliveira1 Oliveira, Lírian França2 Souza, Gabriela Santana de2 Garcia, Myllena Fernandes2 Medeiros, Luiza Amaral1 Faria, Priscila Neves3 Cruz, Cosme Damião4 Sousa, Larissa Barbosa de2 |
Instituciones: | 1Universidade Federal de Uberlandia, Uberlandia, Minas Gerais. Brasil 2Universidade Federal de Uberlandia, Instituto de Ciencias Agrarias, Uberlandia, Minas Gerais. Brasil 3Universidade Federal de Uberlandia, Faculdade de Matematica, Uberlandia, Minas Gerais. Brasil 4Universidade Federal de Vicosa, Departamento de Estatística Aplicada e Biometria, Vicosa, Minas Gerais. Brasil |
Año: | 2021 |
Volumen: | 43 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Experimental, analítico |
Resumen en inglés | Cotton (Gossypium hirsutum L.) is the world’s leading natural textile fibre and is grown in over 60 countries, including Brazil, where it is an important agricultural commodity. The cultivation area currently covers approximately one million hectares in Brazil and has expanded into every region of the country, especially the Cerrado biome. Because of this expansion, it is necessary to analyse the influence of the environment on the genotype behaviour to optimize yields. Thus, the objective of this study was to compare fuzzy logic to traditional methods for selecting coloured-fibre cotton genotypes with high adaptability and yield stability. The experiment was conducted on the 2013/2014, 2014/2015, 2015/2016, and 2016/2017 crops of the Capim Branco farm at the Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil. The following methods were used to select genotypes for adaptability and stability: the Lin and Binns model, additive main effects and multiplicative interaction (AMMI) analysis and the Sugeno fuzzy logic controller. An interaction of the genotype with the environment that affected yield was detected. Environment 4 (the 2016/2017 crop) showed to the lowest genotype to environment interaction. The fuzzy logic approach showed agreement with AMMI and the nonparametric Lin and Binns method. The linguistic fuzzy logic used in the Sugeno fuzzy logic controller demonstrated the potential for selecting cotton genotypes in plant breeding programmes. The UFUJP-16 and UFUPJ-17 genotypes were adaptable, stable and showed promising yields within the tested environments. The fuzzy logic method was effective for estimating adaptability and stability |
Disciplinas: | Agrociencias, Ciencias de la computación |
Palabras clave: | Plantas para uso industrial, Inteligencia artificial, Algodón, Gossypium hirsutum, Mejoramiento genético, Lógica difusa |
Keyword: | Plants for industrial use, Artificial intelligence, Cotton, Gossypium hirsutum, Fuzzy logic, Genetic improvement |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |