Fractional viscoelastic models with novel variable and constant order fractional derivative operators



Título del documento: Fractional viscoelastic models with novel variable and constant order fractional derivative operators
Revista: Revista mexicana de física
Base de datos: PERIÓDICA
Número de sistema: 000460835
ISSN: 0035-001X
Autores: 1
2
Instituciones: 1Charotar University of Science and Technology, P. D. Patel Institute of Applied Sciences, Gujarat. India
2Tecnológico Nacional de México, Cuernavaca, Morelos. México
Año:
Periodo: Mar-Abr
Volumen: 68
Número: 2
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, teórico
Resumen en inglés This paper deals with the application of a novel variable-order and constant-order fractional derivative without singular kernel of AtanganaKoca type to describe the fractional viscoelastic models, namely, fractional Maxwell model, fractional Kelvin-Voigt model, fractional Zener model and fractional Poynting-Thomson model. For each fractional viscoelastic model, the stress relaxation modulus and creep compliance are derived analytically under the variable-order and constant-order fractional derivative without singular kernel. Our results show that the relaxation modulus and creep compliance exhibit viscoelastic behaviors producing temporal fractality at different scales. For each viscoelastic model, the stress relaxation modulus and creep compliance are derived analytically under novel variable-order and constant-order fractional derivative with no singular kernel
Disciplinas: Física y astronomía
Palabras clave: Física matemática,
Modelos viscoelásticos fraccionales,
Derivadas de orden variable,
Operadores de derivadas fraccionarias
Keyword: Mathematical physics,
Fractional viscoelastic models,
Variable-order derivatives,
Fractional derivative operators
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)