Revista: | Revista mexicana de física |
Base de datos: | PERIÓDICA |
Número de sistema: | 000460835 |
ISSN: | 0035-001X |
Autores: | Kachhia, Krunal1 Gómez Aguilar, J.F2 |
Instituciones: | 1Charotar University of Science and Technology, P. D. Patel Institute of Applied Sciences, Gujarat. India 2Tecnológico Nacional de México, Cuernavaca, Morelos. México |
Año: | 2022 |
Periodo: | Mar-Abr |
Volumen: | 68 |
Número: | 2 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, teórico |
Resumen en inglés | This paper deals with the application of a novel variable-order and constant-order fractional derivative without singular kernel of AtanganaKoca type to describe the fractional viscoelastic models, namely, fractional Maxwell model, fractional Kelvin-Voigt model, fractional Zener model and fractional Poynting-Thomson model. For each fractional viscoelastic model, the stress relaxation modulus and creep compliance are derived analytically under the variable-order and constant-order fractional derivative without singular kernel. Our results show that the relaxation modulus and creep compliance exhibit viscoelastic behaviors producing temporal fractality at different scales. For each viscoelastic model, the stress relaxation modulus and creep compliance are derived analytically under novel variable-order and constant-order fractional derivative with no singular kernel |
Disciplinas: | Física y astronomía |
Palabras clave: | Física matemática, Modelos viscoelásticos fraccionales, Derivadas de orden variable, Operadores de derivadas fraccionarias |
Keyword: | Mathematical physics, Fractional viscoelastic models, Variable-order derivatives, Fractional derivative operators |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |