COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms



Título del documento: COVID-19 Outcome Prediction by Integrating Clinical and Metabolic Data using Machine Learning Algorithms
Revista: Revista de investigación clínica
Base de datos: PERIÓDICA
Número de sistema: 000452919
ISSN: 0034-8376
Autores: 1
1
1
2
3
4
5
6
1
1
1
1
1
2
Instituciones: 1Universidad Autónoma de Zacatecas, Unidad Académica de Ingeniería Eléctrica, Zacatecas. México
2Universidad Autónoma de Zacatecas, Laboratorio de Metabolómica y Proteómica, Zacatecas. México
3Universidad Autónoma de San Luis Potosí, Centro de Investigación en Ciencias de la Salud y Biomedicina, San Luis Potosí. México
4Instituto Mexicano del Seguro Social, Zacatecas. México
5Universidad Autónoma de Zacatecas, Unidad Académica de Ciencias Biológicas, Zacatecas. México
6Instituto Mexicano del Seguro Social, Hospital General de Zona 1 Emilio Varela Luján, Zacatecas. México
Año:
Periodo: Nov-Dic
Volumen: 74
Número: 6
Paginación: 314-327
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental, aplicado
Resumen en inglés Background: The coronavirus disease (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus and is responsible for nearly 6 million deaths worldwide in the past 2 years. Machine learning (ML) models could help physicians in identifying high-risk individuals. Objectives: To study the use of ML models for COVID-19 prediction outcomes using clinical data and a combination of clinical and metabolic data, measured in a metabolomics facility from a public university. Methods: A total of 154 patients were included in the study. “Basic profile” was considered with clinical and demographic variables (33 variables), whereas in the “extended profile,” metabolomic and immunological variables were also considered (156 characteristics). A selection of features was carried out for each of the profiles with a genetic algorithm (GA) and random forest models were trained and tested to predict each of the stages of COVID-19. Results: The model based on extended profile was more useful in early stages of the disease. Models based on clinical data were preferred for predicting severe and critical illness and death. ML detected trimethylamine N-oxide, lipid mediators, and neutrophil/lymphocyte ratio as important variables. Conclusion: ML and GAs provided adequate models to predict COVID-19 outcomes in patients with different severity grades
Disciplinas: Medicina
Palabras clave: Virus,
Diagnóstico,
COVID-19,
Metabolómica,
Biomarcadores,
Aprendizaje de máquinas,
Algoritmos genéticos
Keyword: Virus,
Diagnosis,
COVID-19,
Metabolomics,
Biomarkers,
Machine learning,
Genetic algorithms
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)