Revista: | Publicaciones en ciencias y tecnología |
Base de datos: | PERIÓDICA |
Número de sistema: | 000400140 |
ISSN: | 1856-8890 |
Autores: | Acuña Sosa, Anaís Frangeline1 Escalona Pérez, Jhonny Otílio1 |
Instituciones: | 1Universidad Centroccidental "Lisandro Alvarado", Decanato de Ciencias y Tecnología, Barquisimeto, Lara. Venezuela |
Año: | 2015 |
Periodo: | Ene-Jun |
Volumen: | 9 |
Número: | 1 |
Paginación: | 11-25 |
País: | Venezuela |
Idioma: | Español |
Tipo de documento: | Artículo |
Enfoque: | Aplicado, descriptivo |
Resumen en español | En este trabajo estudiamos el problema de completaci´on de matrices. Se presenta en diversas ´areas como la teor´ıa de sistemas y control, procesamiento de im´agenes y filtrado colaborativo. Considerando un modelo de factorizaci´on probabil´ıstica de matrices, establecemos una propuesta basada en estad´ıstica Bayesiana y un algoritmo Maximizaci´on Espectativa (EM) estoc´astico para recubrir una matriz de datos a partir de una muestra de sus entradas. El m´etodo propuesto no requiere de par´ametros de regularizaci´on y da un estimado del rango de la matriz, en contraste con el m´etodo de Factorizaci´on Probabil´ıstica Bayesiana de Matrices (BPMF). Los resultados muestran que el algoritmo propuesto da mejores estimados del rango de la matriz en comparaci´on con un algoritmo basado en lagrangeanos aumentados y es m´as eficiente que el m´etodo BPMF |
Resumen en inglés | In this work we deal with matrix completion problem. This problem arise in different fields, for example, systems and control theory, image processing and collaborative filtering. Given a probabilistic matrix factorization model, we present an approach based on Bayesian statistics and a stochastic expectation maximization algorithm to retrieve an array of data from a sample of its inputs. The proposed method does not requires regularization parameter and estimates the rank of the matrix, in contrast to the BPMF method. Our results show that the proposed method outperforms to an augmented lagrangian algorithm and the BPMF method in its ability to find the rank of the matrix and in efficiency respectively |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Algoritmos, Finalización de matrices, Filtros colaborativos, Análisis de componentes principales |
Keyword: | Mathematics, Applied mathematics, Algorithms, Matrix completion, Collaborative filters, Principal component analysis |
Texto completo: | Texto completo (Ver PDF) |