Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000406109 |
ISSN: | 0716-0917 |
Autores: | Krishnakumari, B1 Venkatakrishnan, Y.B1 |
Instituciones: | 1Shanmugha Arts, Science, Technology and Research Academy, School of Humanities and Sciences, Thanjavur, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Sep |
Volumen: | 35 |
Número: | 3 |
Paginación: | 245-249 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | Let G = (V, E) be a simple graph. A set D ⊆ V (G) is a dominating set if every vertex in V (G) \ D is adjacent to a vertex of D. A dominating set D of a graph G is a complementary tree dominating set if induced sub graph V \ D is a tree. The domination (complementary tree domination, respectively) number of G is the minimum cardinality of a dominating (complementary tree dominating, respectively) set of G. We characterize all unicyclic graphs with equal domination and complementary tree domination numbers |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Matemáticas puras, Combinatoria, Teoría de gráficas, Conjuntos dominantes, Gráficas unicíclicas |
Keyword: | Mathematics, Applied mathematics, Pure mathematics, Combinatorics, Graph theory, Dominating sets, Unicyclic graphs |
Texto completo: | Texto completo (Ver PDF) |