Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000406110 |
ISSN: | 0716-0917 |
Autores: | Jeyanthi, P1 Sudha, A2 |
Instituciones: | 1Govindammal Aditanar College for Women, Department of Mathematics, Thoothukudi, Tamil Nadu. India 2Wavoo Wajeeha Women's College of Arts & Science, Department of Mathematics, Thoothukudi, Tamil Nadu. India |
Año: | 2016 |
Periodo: | Sep |
Volumen: | 35 |
Número: | 3 |
Paginación: | 251-262 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | An edge irregular total k-labeling f : V ∪ E → {1, 2, 3,...,k} of a graph G = (V,E) is a labeling of vertices and edges of G in such a way that for any two different edges uv and u0 v0 their weights f(u) + f(uv) + f(v) and f(u0 ) + f(u0 v0 ) + f(v0 ) are distinct. The total edge irregularity strength tes(G) is defined as the minimum k for which the graph G has an edge irregular total k-labeling. In this paper, we determine the total edge irregularity strength of disjoint union of p isomorphic double wheel graphs and disjoint union of p consecutive non-isomorphic double wheel graphs |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Matemáticas puras, Combinatoria, Teoría de gráficas, Etiquetado |
Keyword: | Mathematics, Applied mathematics, Pure mathematics, Combinatorics, Graph theory, Labelling |
Texto completo: | Texto completo (Ver PDF) |