Spectral properties of horocycle flows for compact surfaces of constant negative curvature



Título del documento: Spectral properties of horocycle flows for compact surfaces of constant negative curvature
Revista: Proyecciones (Antofagasta)
Base de datos: PERIÓDICA
Número de sistema: 000405883
ISSN: 0716-0917
Autores: 1
Instituciones: 1Pontificia Universidad Católica de Chile, Facultad de Matemáticas, Santiago de Chile. Chile
Año:
Periodo: Mar
Volumen: 36
Número: 1
Paginación: 95-116
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico
Resumen en inglés We consider flows, called Wu flows, whose orbits are the unstable manifolds of a codimension one Anosov flow. Under some regularity assumptions, we give a short proof of the strong mixing property of Wu flows and we show that Wu flows have purely absolutely continuous spectrum in the orthocomplement of the constant functions. As an application, we obtain that time changes of the classical horocycle flows for compact surfaces of constant negative curvature have purely absolutely continuous spectrum in the orthocomplement of the constant functions for time changes in a regularity class slightly less than C2. This generalises recent results on time changes of horocycle flows
Disciplinas: Matemáticas
Palabras clave: Matemáticas puras,
Sistemas dinámicos,
Geometría hiperbólica,
Teoría ergódica,
Teoremas ergódicos,
Horociclos,
Flujos,
Teoría espectral,
Campos vectoriales
Keyword: Mathematics,
Pure mathematics,
Dynamic systems,
Hyperbolic geometry,
Ergodic theory,
Ergodic theorems,
Horocycles,
Flows,
Spectral theory,
Vector fields
Texto completo: Texto completo (Ver PDF)