Merging Deductive and Abductive Knowledge Bases: An Argumentation Context Approach



Título del documento: Merging Deductive and Abductive Knowledge Bases: An Argumentation Context Approach
Revista: Polibits
Base de datos: PERIÓDICA
Número de sistema: 000374537
ISSN: 1870-9044
Autores: 1
1
Instituciones: 1Umea University, Department of Computing Science, Umea, Vasterbotten. Suecia
Año:
Periodo: Jul-Dic
Número: 48
Paginación: 39-40
País: México
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Aplicado, descriptivo
Resumen en inglés The consideration of heterogenous knowledge sources for supporting decision making is key to accomplish informed decisions, e.g., about medical diagnosis. Consequently, merging different data from different knowledge bases is a key issue for providing support for decision-making. In this paper, we explore an argumentation context approach, which follows how medical professionals typically reason, in order to merge two basic kinds of reasoning approaches based on logic programs: deductive and abductive inferences. In this setting, we introduce two kinds of argumentation frameworks: deductive argumentation frameworks and abductive argumentation frameworks. For merging these argumentation frameworks, we follow an approach based on argumentation context systems. We illustrate the approach by considering two different declarative specifications of evidence-based medical knowledge into logic programs in order to support informed medical decisions
Disciplinas: Ciencias de la computación,
Medicina
Palabras clave: Inteligencia artificial,
Diagnóstico,
Representación del conocimiento,
Bases de conocimiento,
Fusión de datos
Keyword: Computer science,
Medicine,
Artificial intelligence,
Diagnosis,
Knowledge representation,
Knowledge bases,
Data merging
Texto completo: Texto completo (Ver HTML)