How Informative are In-sample Information Criteria to Forecasting? The Case of Chilean GDP



Título del documento: How Informative are In-sample Information Criteria to Forecasting? The Case of Chilean GDP
Revista: Latin american journal of economics
Base de datos: CLASE
Número de sistema: 000399149
ISSN: 0719-0425
Autores: 1
Instituciones: 1Banco Central de Chile, Departamento de Investigaciones Económicas, Santiago de Chile. Chile
Año:
Periodo: May
Volumen: 50
Número: 1
Paginación: 133-161
País: Chile
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Aplicado
Resumen en inglés This paper compares out-of-sample performance, using the Chilean GDP dataset, of a large number of autoregressive integrated moving average (ARIMA) models with some variations to identify how to achieve the smallest root mean squared forecast error with models based on information criteria—Akaike, Schwarz, and Hannan-Quinn. The analysis also addresses the role of seasonal adjustment and the Easter ef fect. The results show that Akaike and Schwarz are better criteria for forecasting when using actual series and Schwarz and Hannan-Quinn are better with seasonally adjusted data. Accounting for the Easter ef fect improves forecast accuracy for actual and seasonally adjusted data
Disciplinas: Economía
Palabras clave: Econometría,
Condiciones económicas,
Datos estadísticos,
Predicción,
Ajuste estacional,
Chile
Texto completo: Texto completo (Ver PDF)