Non-Linear Unsteady Aerodynamic Response Approximation Using Multi-Layer Functionals



Título del documento: Non-Linear Unsteady Aerodynamic Response Approximation Using Multi-Layer Functionals
Revista: Journal of the Brazilian Society of Mechanical Sciences
Base de datos: PERIÓDICA
Número de sistema: 000312129
ISSN: 0100-7386
Autores: 1
2
Instituciones: 1Universidade de Sao Paulo, Escola de Engenharia de Sao Carlos, Sao Carlos, Sao Paulo. Brasil
2University of Glasgow, Department of Aerospace Engineering, Glasgow, Lanark. Reino Unido
Año:
Periodo: Mar
Volumen: 24
Número: 1
Paginación: 32-39
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental
Resumen en inglés Non-linear functional representation of the aerodynamic response provides a convenient mathematical model for motion-induced unsteady transonic aerodynamic loads response, that accounts for both complex non-linearities and time-history effects. A recent development, based on functional approximation theory, has established a novel functional form; namely, the multi-layer functional. For a large class of non-linear dynamic systems, such multi-layer functional representations can be realised via finite impulse response (FIR) neural networks. Identification of an appropriate FIR neural network model is facilitated by means of a supervised training process in which a limited sample of system input-output data sets is presented to the temporal neural network. The present work describes a procedure for the systematic identification of parameterised neural network models of motion-induced unsteady transonic aerodynamic loads response. The training process is based on a conventional genetic algorithm to optimise the network architecture, combined with a simplified random search algorithm to update weight and bias values. Application of the scheme to representative transonic aerodynamic loads response data for a bidimensional airfoil executing finite-amplitude motion in transonic flow is used to demonstrate the feasibility of the approach. The approach is shown to furnish a satisfactory generalisation property to different motion histories over a range of Mach numbers in the transonic regime
Disciplinas: Ingeniería
Palabras clave: Ingeniería mecánica,
Aerodinámica,
Inestabilidad,
Aeroelasticidad,
Redes neuronales,
Algoritmos genéticos
Keyword: Engineering,
Mechanical engineering,
Aerodynamics,
Instability,
Aeroelasticity,
Neural networks,
Genetic algorithms
Texto completo: Texto completo (Ver HTML)