Price discovery between carbonated soft drink manufacturers and retailers: a disaggregate analysis with pc and lingam algorithms



Título del documento: Price discovery between carbonated soft drink manufacturers and retailers: a disaggregate analysis with pc and lingam algorithms
Revista: Journal of applied economics
Base de datos: CLASE
Número de sistema: 000430347
ISSN: 1667-6726
Autores: 1
2
Instituciones: 1Capital University of Economics and Business, International Shool of Economic Management, Beijing. China
2Texas A&M University, Department of Agricultural Economics, College Station, Texas. Estados Unidos de América
Año:
Periodo: May
Volumen: 18
Número: 1
Paginación: 173-197
País: Argentina
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, descriptivo
Resumen en inglés This paper considers the use of two machine learning algorithms to identify the causal relationships among retail prices, manufacturer prices, and number of packages sold. The two algorithms are PC and Linear Non-Gaussian Acyclic Models (LiNGAM). The dataset studied comprises scanner data collected from the retail sales of carbonated soft drinks in the Chicago area. The PC algorithm is not able to assign direction among retail price, manufacturer price and quantity sold, whereas the LiNGAM algorithm is able to decide in every case, i.e., retail price leads manufacturer price and quantity sold
Disciplinas: Economía,
Matemáticas
Palabras clave: Precios,
Economía industrial,
Matemáticas aplicadas,
Industria refresquera,
Algoritmos,
Modelos matemáticos,
Chicago,
Estados Unidos de América,
Bebidas
Texto completo: Texto completo (Ver PDF)