Offensive Language Recognition in Social Media



Título del documento: Offensive Language Recognition in Social Media
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560479
ISSN: 1405-5546
Autores: 1
1
2
1
Instituciones: 1Technological University Dublin, Dublín. Irlanda
2Universitat Politécnica de Valencia, Valencia. España
Año:
Periodo: Abr-Jun
Volumen: 24
Número: 2
Paginación: 523-532
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés This article proposes an approach to solving the problem of multiclassification within the framework of aggressive language recognition in Twitter. At the stage of preprocessing external data is added to the existing dataset, which is based on information in the links in dataset. This made it possible to expand the training dataset and thereby to improve the quality of the classification. The model created is an ensemble of classical machine learning models included Logistic Regression, Support Vector Machines, Naive Bayes models and a combination of Logistic Regression and Naive Bayes. The obtained value of macro F1-score for one of the experiments achieved 0.61, which exceeds the state-of-art published value by 1 percentage point. This indicates the potential value of the proposed approach in the field of hate speech recognition in social media.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Hate speech,
Ensemble of models,
Logistic regression,
Support vector machine,
Naive Bayes,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)