Revista: | Computación y sistemas |
Base de datos: | PERIÓDICA |
Número de sistema: | 000383496 |
ISSN: | 1405-5546 |
Autores: | Coello, Lenniet1 Fernández, Yumilka1 Filiberto, Yaima1 Bello, Rafael2 |
Instituciones: | 1Universidad de Camagüey, Departamento de Ciencias de la Computación, Camagüey. Cuba 2Universidad Central "Marta Abreu" de Las Villas, Departamento de Ciencias de la Computación, Santa Clara, Villa Clara. México |
Año: | 2015 |
Periodo: | Abr-Jun |
Volumen: | 19 |
Número: | 2 |
Paginación: | 309-320 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, descriptivo |
Resumen en inglés | The most widely used neural network model is Multilayer Perceptron (MLP), in which training of the connection weights is normally completed by a Back Propagation learning algorithm. Good initial values of weights bear a fast convergence and a better generalization capability even with simple gradient-based error minimization techniques. This work presents a method to calculate the initial weights in order to train the Multilayer Perceptron Model. The method named PSO+RST+FUZZY is based on the similarity quality measure proposed within the framework of the extended Rough Set Theory that employs fuzzy sets to characterize the domain of similarity thresholds. Sensitivity of BP to initial weights with PSO+RST+FUZZY was studied experimentally, showing better performance than other methods used to calculate feature weights |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Redes, Redes neuronales, Perceptrón multicapa, Conjuntos difusos, Enjambre de partículas, Medidas de similaridad |
Keyword: | Computer science, Networks, Neural networks, Multilayer perceptron, Fuzzy sets, Particle swarm, Similarity measures |
Texto completo: | Texto completo (Ver HTML) |