Revista: | Brazilian journal of physics |
Base de datos: | PERIÓDICA |
Número de sistema: | 000329399 |
ISSN: | 0103-9733 |
Autores: | Zoli, Marco1 |
Instituciones: | 1Università degli Studi di Camerino, Scuola di Scienze e Tecnologie, Camerino. Italia |
Año: | 2009 |
Periodo: | Dic |
Volumen: | 39 |
Número: | 4 |
Paginación: | 645-651 |
País: | Brasil |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico, descriptivo |
Resumen en inglés | The instantonic approach for a Φ4 model potential is reexamined in the asymptotic limit. The path integral of the system is derived in semiclassical approximation expanding the action around the classical background. It is shown that the singularity in the path integral, arising from the zero mode in the quantum fluctuation spectrum, can be tackled only assuming a finite (although large) system size. On the other hand the standard instantonic method assumes the (anti)kink as classical background. But the (anti)kink is the solution of the Euler-Lagrange equation for the infinite size system. This formal contradiction can be consistently overcome by the finite size instantonic theory based on the Jacobi elliptic functions formalism. In terms of the latter I derive in detail the classical background which solves the finite size Euler-Lagrange equation and obtain the general path integral in finite size. Both problem and solution offer an instructive example of fruitful interaction between mathematics and physics |
Disciplinas: | Física y astronomía, Matemáticas |
Palabras clave: | Física, Física de partículas y campos cuánticos, Matemáticas aplicadas, Métodos de trayectoria integral, Sistemas de tamaño finito, Instantones |
Keyword: | Physics and astronomy, Mathematics, Particle physics and quantum fields, Physics, Applied mathematics, Path Integral Methods, Finite size systems, Instantons |
Texto completo: | Texto completo (Ver HTML) |