Estimating Total Claim Size in the Auto Insurance Industry: a Comparison between Tweedie and Zero-Adjusted Inverse Gaussian Distribution



Título del documento: Estimating Total Claim Size in the Auto Insurance Industry: a Comparison between Tweedie and Zero-Adjusted Inverse Gaussian Distribution
Revista: BAR - Brazilian Administration Review
Base de datos: CLASE
Número de sistema: 000335185
ISSN: 1807-7692
Autores: 1
1
1
1
Instituciones: 1Instituto Brasileiro de Mercado de Capitais, Sao Paulo. Brasil
Año:
Periodo: Ene-Mar
Volumen: 8
Número: 1
Paginación: 37-47
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Analítico, descriptivo
Resumen en inglés The objective of this article is to estimate insurance claims from an auto dataset using the Tweedie and zeroadjusted inverse Gaussian (ZAIG) methods. We identify factors that influence claim size and probability, and compare the results of these methods which both forecast outcomes accurately. Vehicle characteristics like territory, age, origin and type distinctly influence claim size and probability. This distinct impact is not always present in the Tweedie estimated model. Auto insurers should consider estimating total claim size using both the Tweedie and ZAIG methods. This allows for an estimation of confidence interval based on empirical quantiles using bootstrap simulation. Furthermore, the fitted models may be useful in developing a strategy to obtain premium pricing
Disciplinas: Economía,
Matemáticas
Palabras clave: Empresas,
Matemáticas aplicadas,
Seguros de automóviles,
Reclamaciones de seguros,
Modelos de regresión
Texto completo: Texto completo (Ver PDF)