Pronóstico de sequías meteorológicas con filtro de Kalman discreto en la cuenca del río Fuerte, México



Título del documento: Pronóstico de sequías meteorológicas con filtro de Kalman discreto en la cuenca del río Fuerte, México
Revista: Agrociencia
Base de datos: PERIÓDICA
Número de sistema: 000433224
ISSN: 1405-3195
Autores: 1
1
2
1
1
Instituciones: 1Universidad Autónoma Chapingo, Chapingo, Estado de México. México
2University of Arizona, Department of Hydrology and Water Resources, Tucson, Arizona. Estados Unidos de América
Año:
Periodo: Oct-Nov
Volumen: 52
Número: 7
País: México
Idioma: Español
Tipo de documento: Artículo
Enfoque: Analítico, prospectivo
Resumen en español El monitoreo y pronóstico de sequías es importante para evaluar riesgos, tomar decisiones, acciones efectivas y oportunas para evitar y reducir sus efectos negativos. Por lo tanto, el objetivo de este estudio fue realizar el pronóstico de los índices de sequía SPI (Standard Precipitation Index) y SPEI (Standard Precipitation Evapotranspiration Index) para 14 estaciones meteorológicas de la cuenca del río Fuerte en el Noroeste de México. La hipótesis fue que es posible lograr tal objetivo mediante la implementación del algoritmo del filtro de Kalman discreto (DKF). La cuenca del río Fuerte, Sinaloa, México, es importante por su producción agrícola y por su generación de energía hidroeléctrica. El pronóstico de los índices de sequía SPI y SPEI se realizó para escalas temporales (duraciones de sequías) de 3, 6, 12 y 24 meses, durante el periodo 1961-2011, y con 1, 2, 3 y 4 meses de anticipación. Dos modelos se implementaron utilizando el filtro de Kalman Discreto: un autorregresivo de segundo orden (DKF-AR2), y un autorregresivo de segundo orden con entrada exógena (DKF-ARX). Las variables climáticas probadas como exógenas fueron la precipitación (Pt), las temperaturas máximas y mínimas (Tmax y Tmin) y la evapotranspiración de referencia (ET0); la variable exógena precipitación, Pt, presentó mejores resultados. La metodología DKF-AR2 presentó el mejor resultado en el pronóstico de los índices para seis estaciones localizadas en la parte alta de la cuenca, con predominancia de climas templados y semifríos. La metodología DKF-ARX-Pt fue mejor en las ocho estaciones restantes de la parte media y baja, ubicadas en climas cálidos. Los mejores pronósticos se obtuvieron para escalas (duraciones de sequías) de 12 y 24 meses, y el pronóstico de SPEI fue mejor que el de SPI. Los índices de Nash-Sutcliffe (E) para 12 y 24 meses llegaron a ser hasta de 0.92 y 0.96; en el caso de 3 y 6 meses, los índices de Nash-Sutcliffe fuer
Resumen en inglés The monitoring and forecasting of droughts are important to evaluate risks, take decisions, as well as undertake effective and timely actions to avoid and reduce their negative effects. Therefore, the objective of this study was to forecast the SPI (Standard Precipitation Index) and SPEI (Standard Precipitation Evapotranspiration Index) drought indices for 14 meteorological stations in the Fuerte River watershed in northwest Mexico. Our hypothesis was that it is possible to achieve such objective through the implementation of the Discrete Kalman filter algorithm (DKF). The Fuerte River watershed, Sinaloa, Mexico, is important for its agricultural production and generation of hydroelectric power. We did the forecast of the SPI and SPEI drought indices for time scales (drought durations) of 3, 6, 12 and 24 months, during the period 1961-2011, and with 1, 2, 3 and 4 months in advance. Two models were implemented using the Discrete Kalman filter: a second-order autoregressive (DKF-AR2), and a second-order autoregressive with exogenous input (DKF-ARX). The climatic variables tested as exogenous were precipitation (Pt), maximum and minimum temperatures (Tmax and Tmin) and reference evapotranspiration (ET0); the exogenous variable precipitation, Pt, recorded better results. The DKF-AR2 methodology presented the best result in the forecast of the indices for six stations located in the upper part of the watershed, with predominance of temperate and semi-cold climates. The DKF-ARX-Pt methodology proved better in the remaining eight stations of the middle and lower parts, located in warm climates. The best forecasts were obtained for scales (drought durations) of 12 and 24 months, and the SPEI forecast was better than that of SPI. The Nash-Sutcliffe indices (E) for 12 and 24 months reached up to 0.92 and 0.96; in the case of 3 and 6 months, the Nash-Sutcliffe indices were approximately 0.5. The anticipation of the prognosis was better for 1 and 2 months
Disciplinas: Geociencias
Palabras clave: Ciencias de la atmósfera,
Sequía,
Meteorología,
México,
Filtro de Kalman,
Modelos autorregresivos
Keyword: Atmospheric sciences,
Drought,
Meteorology,
Kalman filter,
Autoregressive models,
Mexico
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)