Revista: | Advances in applied Clifford algebras |
Base de datos: | PERIÓDICA |
Número de sistema: | 000188551 |
ISSN: | 0188-7009 |
Autores: | Kwasniewski, A.K1 Kwasniewski, B.K2 |
Instituciones: | 1Bialystok University, Institute of Computer Science, Bialystok. Polonia 2Bialystok University, Institute of Mathematics, Bialystok. Polonia |
Año: | 2001 |
Periodo: | Jun |
Volumen: | 11 |
Número: | 1 |
Paginación: | 39-61 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | The q-extended hyperbolic functions of n-th order {hq,s (z)}sez, which are Zn-components of expq function forro the set fundamental solutions of a simple q-difference equation. Against the background of q-deformed hyperbolic functions of n-th order other natural extensions and related topics are considered. Apart from easy general solution of homogeneous ordinary q-difference equations of n-th order main trigonometric-like identity known for hyperbolic functions of n-th order is given its q-commutative counterpart. Hint how to arrive at other identities is implicit in the q-treatment proposed. The paper constitutes an example of the application of the method of projections presented in Advances in Applied Clifford Algebras publication [19] ; see also references to Ben Cheikh's papers |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas aplicadas, Algebra, Funciones especiales, Funciones hiperbólicas |
Keyword: | Mathematics, Applied mathematics, Algebra, Special functions, Difference equations, Hyperbolic functions |
Texto completo: | Texto completo (Ver HTML) |