Advances in applied Clifford algebras (101 documentos)


21.-
Quantum clifford hopf algebra for quantum field theory
Fauser, Bertfried1
1Universitat Konstanz, Fachbereich Physik, Konstanz, Baden-Wurttemburg. Alemania
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 2 Dic, Pág. 115-125]

22.-
23.-
The twistor structure of the biquaternionic projective point
Agnew, Alfonso1
1California State University, Department of Mathematics, Fullerton, California. Estados Unidos de América
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 2 Dic, Pág. 231-240]

24.-
Clifford tetrads, null zig zags, and quantum gravity
Cohen, Marcus S1
1New Mexico State University, Department of Mathematical Science, Las Cruces, Nuevo México. Estados Unidos de América
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 1 Jun, Pág. 71-106]

25.-
Generalized self-duality of 2 forms
Degirmenci, N1; Kocak, S
1Anadolu University, Mathematics Department, Eskisehir. Turquía
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 1 Jun, Pág. 107-113]

26.-
Hardy spaces on the quaternions
Zhao, Jiman1
1Beijing Normal University, Department of Mathematics, Beijing. China
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 1 Jun, Pág. 47-55]

27.-
Hyperbolic quantum mechanics
Khrennikov, Andrei1
1University of Vaxjo, Internationa Center for Mathematical Modeling in Physics and Cognitive Science, Vaxjo. Suecia
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 1 Jun, Pág. 1-9]

28.-
29.-
N-dimensional space-time unit spheres and Lorentz transformation
Wuming Li1
1Tonghua Teacher's College, Institute of Mathematics and Physics, Tohghua, Jilin. China
[Advances in applied Clifford algebras, México, 2003 Vol. 13 Núm. 1 Jun, Pág. 57-64]

30.-
31.-
Comparative study of mixed product and quaternion product
Alam, Shah1
1Shahjalal University of Science and Technology, Department of Physics, Sylhet, Bangladesh. India
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 189-194]

32.-
Covariances of the Dirac and Maxwell equations
Bayro Corrochano, Eduardo1; Lounesto, Pertti2; Puska, Perttu3
1Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados, Guadalajara, Jalisco. México; 2University of Helsinki, Department of Mathematics, Helsinki. Finlandia; 3Helsinki University of Technology, Electromagnetics Laboratory, Espoo, Uusima. Finlandia
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 91-108]

33.-
Multivector differential calculus
Hitzer, Eckhard1
1Fukui University, Department of Mechanical Engineering, Fukui. Japón
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 135-182]

34.-
New approach to the positron equation by means of the algebraic structure or the ideals
Miralles, D1; Parra, J.M; Vaz-Junior, J2
1Universidad de Barcelona, Departamento de Física Fundamental, Barcelona. España; 2Universidade Estadual de Campinas, Departamento de Matematica Aplicada, Campinas, Sao Paulo. Brasil
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 183-188]

35.-
Quaternions as reflexive skew fields
Van Praag, Paul1
1Universite de Mons-Hainaut, Institut de Mathematique "Le Pentagone", Mons, Hainaut. Bélgica
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 235-249]

36.-
The geometric associative algebras of Euclidean space
Joyce, W.P1; Butler, P.H
1University of Canterbury, Department of Physics and Astronomy, Christchurch, Canterbury. Nueva Zelanda
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 195-233]

37.-
38.-
Triality, biquaternion and vector representation of the Dirac equation
Liu Yu Fen1
1Academia Sinica, Institute of Theoretical Physics, Beijing. China
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 2 Dic, Pág. 109-124]

39.-
A formal definition of carriers
Keller, Jaime1; Weinberger, Peter2
1Technical University of Viena, Center for Computational Materials Science, Viena. Austria; 2Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Cuautitlán, Estado de México. México
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 1 Dic, Pág. 39-62]

40.-
An elementary construction of the geometric algebra
Macdonald, Alan1
1Luther College, Department of Mathematics, Decorah, Iowa. Estados Unidos de América
[Advances in applied Clifford algebras, México, 2002 Vol. 12 Núm. 1 Dic, Pág. 1-6]