A new variational approach and its application to heavy quarkonia



Document title: A new variational approach and its application to heavy quarkonia
Journal: Revista mexicana de física
Database: PERIÓDICA
System number: 000446975
ISSN: 0035-001X
Authors: 1
1
2
Institutions: 1Punjab University, Punjab, Haryana. Pakistán
2Universidad Michoacana de San Nicolás de Hidalgo, Morelia Michoacán. México
Year:
Season: Ene-Feb
Volumen: 67
Number: 1
Pages: 33-53
Country: México
Language: Inglés
Document type: Artículo
Approach: Analítico, teórico
English abstract By combining the variational principle with Heisenberg uncertainty principle in an effective Hamiltonian for heavy flavored mesons, we introduce a framework to estimate masses and radii of these states from an analytical constraint. In a novel manner, a model for quark velocity and a model for quark momentum width are introduced. These kinematical model parameters are obtained as analytical functions of inter quark separation in heavy quarkonia. The values of such quark parameters are then used in the calculation of S-wave annihilation decay rates of c c ¯ and b b ¯. To test the accuracy of our technique we first calculate the spin averaged masses, scalar radii and annihilation decay rates of charmonium and bottomonium without and with relativistic corrections by solving the Schrödinger wave equation with the appropriate parametrization of the Song-Lin potential. The Schrödinger wave equation is solved numerically with the matrix Numerov method and we observe a good agreement with the experimental measurements and other theoretical calculations and extract strong running coupling constant for c c ¯ and b b ¯ systems. In non-relativistic settings, heavy meson spectra have been obtained and extended to rather higher excited states within our framework by using bare masses of c and b quarks which we have extracted from analysis of experimental data
Disciplines: Física y astronomía
Keyword: Física,
Modelo de potencial no relativista,
Charmonio,
Bottomonio,
Principio variacional
Keyword: Physics,
Bottomonium,
Non-relativistic potential model,
Charmonium,
Variational principle
Full text: Texto completo (Ver HTML) Texto completo (Ver PDF)