Unsupervised Sentence Embeddings for Answer Summarization in Non-factoid CQA



Título del documento: Unsupervised Sentence Embeddings for Answer Summarization in Non-factoid CQA
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560361
ISSN: 1405-5546
Autores: 2
1
1
1
1
Instituciones: 1Hanoi University of Science and Technology, Hanoi. Vietnam
2Thai Nguyen University of Information and Communication Technology, Thai Nguyen. Vietnam
Año:
Periodo: Jul-Sep
Volumen: 22
Número: 3
Paginación: 835-843
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés This paper presents a method for summarizing answers in Community Question Answering. We explore deep Auto-encoder and Long-short-term-memory Auto-encoder for sentence representation. The sentence representations are used to measure similarity in Maximal Marginal Relevance algorithm for extractive summarization. Experimental results on a benchmark dataset show that our unsupervised method achieves state-of-the-art performance while requiring no annotated data.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial,
Memoria a corto plazo y larga duración,
Algoritmos,
Resúmenes,
Preguntas,
Respuestas,
Comunidad,
Codificación
Keyword: Artificial intelligence,
Long short-term memory,
Algorithms,
Abstracts,
Questions,
Answers,
Community,
Encoding
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)