Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560360 |
ISSN: | 1405-5546 |
Autores: | Rudrapal, Dwijen1 Das, Amitava2 |
Instituciones: | 1National Institute of Technology, Agartala. India 2Indian Institute Of Information Technology, Sri City, Uttar Pradesh. India |
Año: | 2018 |
Periodo: | Jul-Sep |
Volumen: | 22 |
Número: | 3 |
Paginación: | 739-746 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | Semantic role labeling (SRL) is a task of defining the conceptual role to the arguments of predicate in a sentence. This is an important task for a wide range of tweet related applications associated with semantic information extraction. SRL is a challenging task due to the difficulties regarding general semantic roles for all predicates. It is more challenging for Social Media Text (SMT) where the nature of text is more casual. This paper presents an automatic SRL system for English tweets based on Sequential Minimal Optimization (SMO) algorithm. Proposed system is evaluated through experiments and reports comparable performance with the prior state-of-the art SRL system. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Inteligencia artificial, Texto, Medios sociales, Twitter, Etiquetado, Semántica, Inglés |
Keyword: | Artificial intelligence, Texts, Social media, Twitter, Labeling, Semantics, English |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |