Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560587 |
ISSN: | 1405-5546 |
Autores: | Rojas Delgado, Jairo1 Pupo Meriño, Mario2 Gulín González, Jorge1 |
Instituciones: | 1Universidad de las Ciencias Informáticas, Centro de Estudios de Matemática Computacional, La Habana. Cuba 2Universidad de las Ciencias Informáticas, Departamento de Bioinformatica, La Habana. Cuba |
Año: | 2021 |
Periodo: | Abr-Jun |
Volumen: | 25 |
Número: | 2 |
Paginación: | 287-305 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | The novel SARS-CoV 2 coronavirus has grown to become a global pandemic. Since then, several approaches have been adopted and developed to provide insights into epidemic origins, worldwide dispersal and epidemiological history. The Susceptible, Exposed, Infected and Recovered (SEIR) models are among the widely used approaches to study the further progression of the pandemic. However, finding such model parameters remains a difficult task, especially in small geographical areas where details of the initial compartments and the model parameters deviates from global distributions. The main result of our paper is a meta-heuristic approach to find SEIR model parameters that best explains the infected time series. Our approach, allows studying different future scenarios considering not only the most likely future, but a set of possible SEIR parameters that explains current epidemic trends. We show that there are several possible parameters sets of such models able to explain current epidemic trends and by studding them is possible to obtain insights into the future possible outcomes. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Procesamiento de datos |
Keyword: | SARS-CoV 2, SEIR, Meta-heuristic, Data processing |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |