A Computational Approach to Finding SEIR Model Parameters that Best Explain Infected and Recovered Time Series for SARS-CoV 2



Título del documento: A Computational Approach to Finding SEIR Model Parameters that Best Explain Infected and Recovered Time Series for SARS-CoV 2
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560587
ISSN: 1405-5546
Autores: 1
2
1
Instituciones: 1Universidad de las Ciencias Informáticas, Centro de Estudios de Matemática Computacional, La Habana. Cuba
2Universidad de las Ciencias Informáticas, Departamento de Bioinformatica, La Habana. Cuba
Año:
Periodo: Abr-Jun
Volumen: 25
Número: 2
Paginación: 287-305
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés The novel SARS-CoV 2 coronavirus has grown to become a global pandemic. Since then, several approaches have been adopted and developed to provide insights into epidemic origins, worldwide dispersal and epidemiological history. The Susceptible, Exposed, Infected and Recovered (SEIR) models are among the widely used approaches to study the further progression of the pandemic. However, finding such model parameters remains a difficult task, especially in small geographical areas where details of the initial compartments and the model parameters deviates from global distributions. The main result of our paper is a meta-heuristic approach to find SEIR model parameters that best explains the infected time series. Our approach, allows studying different future scenarios considering not only the most likely future, but a set of possible SEIR parameters that explains current epidemic trends. We show that there are several possible parameters sets of such models able to explain current epidemic trends and by studding them is possible to obtain insights into the future possible outcomes.
Disciplinas: Ciencias de la computación
Palabras clave: Procesamiento de datos
Keyword: SARS-CoV 2,
SEIR,
Meta-heuristic,
Data processing
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)