Pedestrian Detection and Tracking Using a Dynamic Vision Sensor



Título del documento: Pedestrian Detection and Tracking Using a Dynamic Vision Sensor
Revista: Computación y sistemas
Base de datos:
Número de sistema: 000560417
ISSN: 1405-5546
Autores: 1
1
3
2
Instituciones: 1Universidad Autónoma de Guadalajara, Departamento de Ciencias Computacionales, Guadalajara, Jalisco. México
2Barcelona Supercomputing Center, Barcelona. España
3Instituto Politécnico Nacional, Centro de Investigación y de Estudios Avanzados, Zapopan, Jalisco. México
Año:
Periodo: Oct-Dic
Volumen: 22
Número: 4
Paginación: 1077-1083
País: México
Idioma: Inglés
Tipo de documento: Artículo
Resumen en inglés Neuromorphic sensors such as the Dynamic Vision Sensor (DVS) emulate the behavior of the primary vision system. Its asynchronous behavior makes the data processing easier and faster due to the analysis is only in the active pixels. Pedestrian kinematics contains specific movement patterns feasible to be detected, like the angular movement of arms and feet. Some previous methodologies were focused on pedestrian detection based on the static shapes detection like cylinders or circles, however, they do not take into account the kinematic behavior of the body by itself. In this paper, we presented an algorithm inspired in K-means clustering and describes the analysis of the human kinematics based on DVS in order to detect and track pedestrians in a controlled environment.
Disciplinas: Ciencias de la computación
Palabras clave: Inteligencia artificial
Keyword: Dynamic vision sensor,
Pedestrian detection,
Pedestrian tracking,
Artificial intelligence
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)