Revista: | Proyecciones (Antofagasta) |
Base de datos: | PERIÓDICA |
Número de sistema: | 000406129 |
ISSN: | 0716-0917 |
Autores: | Guzzo-Junior, Henrique1 Labra, Alicia2 |
Instituciones: | 1Universidade de Sao Paulo, Instituto de Matematica e Estatistica, Sao Paulo. Brasil 2Universidad de Chile, Departamento de Matemáticas, Santiago de Chile. Chile |
Año: | 2016 |
Periodo: | Dic |
Volumen: | 35 |
Número: | 4 |
Paginación: | 505-519 |
País: | Chile |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Enfoque: | Analítico |
Resumen en inglés | In this paper we work with the variety of commutative algebras satisfying the identity β((x2y)x − ((yx)x)x) + γ(x3y − ((yx)x)x)=0, where β, γ are scalars. They are called generalized almost-Jordan algebras. We prove that this variety is equivalent to the variety of commutative algebras satisfying (3β + γ)(Gy(x, z, t) − Gx(y, z, t)) + (β + 3γ)(J(x, z, t)y − J(y, z, t)x)=0, for all x, y, z, t ∈ A, where J(x, y, z)=(xy)z+(yz)x+(zx)y and Gx(y, z, t)=(yz, x, t)+(yt, x, z)+ (zt, x, y). Moreover, we prove that if A is a commutative algebra, then J(x, z, t)y = J(y, z, t)x, for all x, y, z, t ∈ A, if and only if A is a generalized almost-Jordan algebra for β = 1 and γ = −3, that is, A satisfies the identity (x2y)x + 2¡ (yx)x ¢ x − 3x3y = 0 and we study this identity. We also prove that if A is a commutative algebra, then Gy(x, z, t) = Gx(y, z, t), for all x, y, z, t ∈ A, if and only if A is an almost-Jordan or a Lie Triple algebra |
Disciplinas: | Matemáticas |
Palabras clave: | Matemáticas puras, Algebra, Algebras de Jordan, Algebras de Lie |
Keyword: | Mathematics, Pure mathematics, Algebra, Jordan algebras, Lie algebras |
Texto completo: | Texto completo (Ver PDF) |