Revista: | Computación y sistemas |
Base de datos: | |
Número de sistema: | 000560152 |
ISSN: | 1405-5546 |
Autores: | Medjahed, Seyyid Ahmed1 Ouali, Mohammed2 |
Instituciones: | 1Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Oran. Argelia 2Taif University, College of Computers and Information Technology, Taif. Arabia Saudita |
Año: | 2018 |
Periodo: | Abr-Jun |
Volumen: | 22 |
Número: | 2 |
Paginación: | 675-683 |
País: | México |
Idioma: | Inglés |
Tipo de documento: | Artículo |
Resumen en inglés | Microarray expression data has been a very active research field and an indispensable tool for cancer diagnosis. The microarray expression dataset contains thousands of genes and selecting a subset of informative genes is a primordial preprocessing step for improving the cancer classification. Support Vector Machine Recursive Feature Elimination (SVM-RFE) is one of the popular and effective gene selection approaches. However, SVM-RFE attempts to find the best possible combination for classification and does not take into account the ability of class separability for each gene. In this paper, a novel SVM-RFE based on energy distance (ED) and called SVM-RFE-ED is proposed to overcome the limitation of standard SVM-RFE. The aims of our study are to achieve a high classification accuracy rate and improve the classification model. The experimentation is conducted on five widely used datasets. Experimental results indicate that the proposed approach SVM-RFE-ED provides good results and achieve a high classification accuracy rate using a small number of genes. |
Disciplinas: | Ciencias de la computación |
Palabras clave: | Inteligencia artificial, Diagnóstico de cáncer, Distancia de energía, Especificidad, Estabilidad, Máquina de vectores de soporte, Precisión de clasificación, Selección de genes, Sensibilidad |
Keyword: | Cancer diagnosis, Classification precision, Energy distance, Sensitivity, Specificity, Stability, Support vector machine, Gene selection, Artificial intelligence |
Texto completo: | Texto completo (Ver HTML) Texto completo (Ver PDF) |