Una revision de redes MLP como clasificadores de multiples clases



Título del documento: Una revision de redes MLP como clasificadores de multiples clases
Revista: Tecnociencia Chihuahua
Base de datos: PERIÓDICA
Número de sistema: 000450146
ISSN: 1870-6606
Autores: 1
1
Instituciones: 1Instituto Tecnológico de Chihuahua, Chihuahua. México
Año:
Periodo: Sep-Dic
Volumen: 9
Número: 3
Paginación: 148-159
País: México
Idioma: Español
Tipo de documento: Artículo
Enfoque: Analítico, descriptivo
Resumen en español Se presenta el estado actual de clasificadores de multiples clases implementados con redes Multi Layer Perceptron, MLP. Los clasificadores de multiples clases basados en redes MLP han sido utilizados en muchos casos con exito. Se presentan, primero, los aspectos generales y las diferentes formas de implementar clasificadores de multiples clases, incluyendo las redes MLP. Despues se presentan aspectos de arquitectura de las redes MLP clasificadoras incluyendo consideraciones de diseno y organizacion tales como: capas de entrada, ocultas y de salida, asi como la cantidad de neuronas en cada capa. Luego viene una revision acerca de las metodologias existentes para su entrenamiento, y como es que la organizacion de la red afecta las condiciones de entrenamiento. A continuacion, se presentan casos de uso de las redes MLP como clasificadores, sus caracteristicas y detalles acerca de los parametros referentes al diseno de la red y tambien se revisan los resultados de su aplicacion. En el material revisado, pareciera ser que el desempeno depende en gran medida de su aplicacion especifica, aunque no existe trabajo que demuestre esto en forma determinante
Resumen en inglés The current state of classifiers multiple classes implementedMulti Layer Perceptron networks, MLP, is presented. Multi-classclassifiers based on MLP neural network have been successfullyused in many cases. First, general aspects and existingapproaches of implementing multi-class classifiers are introduced,including MLP neural networks. Afterwards, aspects on MLPnetwork architecture are described, including the design andorganization considerations such as input layers, hidden layersand output layers, as well as amount of neurons in each layer.Then comes a review on existing methodologies for training,and how the network organization affects the training conditions.Afterwards, some cases of MLP networks used as classifiersare revised, considering their characteristics and details aboutnetwork design along with its results in the particular application.Although it seems from the review of literature that theperformance of this kind of classifiers largery depends on thespecific application, there exist no concluding results on it
Disciplinas: Ciencias de la computación
Palabras clave: Redes,
Redes neuronales,
Clasificadores de clases múltiples,
Entrenamiento
Keyword: Networks,
Neuronal networks,
Multiple class classifiers,
Training
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)