Upland rice: phenotypic diversity for drought tolerance



Título del documento: Upland rice: phenotypic diversity for drought tolerance
Revista: Scientia Agricola
Base de datos: PERIÓDICA
Número de sistema: 000455511
ISSN: 0103-9016
Autores: 1
1
2
3
1
4
4
5
5
1
Instituciones: 1Empresa Brasileira de Pesquisa Agropecuaria, Arroz e Feijao, Santo Antonio de Goias, Goias. Brasil
2Empresa Brasileira de Pesquisa Agropecuaria, Mandioca e Fruticultura, Araraquara, Bahia. Brasil
3Universidade Federal do Tocantins, Laboratorio de Plantas Infestantes, Gurupi, Tocantins. Brasil
4Uni-Ahanguera, Centro Universitario de Goias, Goiania, Goias. Brasil
5Universidade Federal de Goias, Departamento de Genetica e Melhoramento de Plantas, Goiania, Goias. Brasil
Año:
Volumen: 78
Número: 5
País: Brasil
Idioma: Inglés
Tipo de documento: Artículo
Enfoque: Experimental, aplicado
Resumen en inglés Upland rice is cultivated mostly in Latin America and Africa by small farmers and in areas with risk of dry spells. This study evaluated morphophysiological mechanisms of upland rice associated to drought adaptation. A set of 25 upland rice genotypes were grown in a plant phenotyping platform during 2015 and 2017 under regular irrigation and water restriction. We evaluated morphophysiological traits in shoots (vegetative structures growth, gas exchange, water use efficiency, carboxylation efficiency, water status) and roots (length, surface area, volume and diameter), as well as agronomic traits (grain yield and its components). There was a reduction in grain yield by up to 54 % and 58 % in 2015 and 2017, respectively, under water deficit. Five upland rice genotypes with the best yield performances in both water treatments applied were recommended to the upland rice-breeding program: Bico Ganga, BRS Esmeralda, BRSMG Curinga, Guarani, and Rabo de Burro. In this study, morphophysiological traits associated to drought tolerance concerned the plant high capacity to save water in the leaves, low leaf water potential, high ability to reduce vegetative structures, high water use efficiency, high photosynthetic capacity, and improved capacity to absorb water from drying soil, either by osmotic adjustment or additional investment into the root system. Therefore, we concluded that different secondary traits contributed to drought tolerance and should be evaluated along with grain yield to improve efficiency of breeding selection
Disciplinas: Agrociencias,
Biología
Palabras clave: Gramíneas,
Fisiología vegetal,
Arroz,
Oryza sativa,
Estrés hídrico,
Tolerancia a la sequía,
Diversidad fenotípica
Keyword: Gramineae,
Plant physiology,
Rice,
Oryza sativa,
Water stress,
Drought tolerance,
Phenotypic diversity
Texto completo: Texto completo (Ver HTML) Texto completo (Ver PDF)